
RADC-TR-90-131
Final Technical Report
July 1990 AD-A225 988

THE AMPS

The MITRE Corporation

Bruce Dawson, David S. Day, Alice Mulvehill

DTIC
ELECTE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700



This .report has been reviewed by the RADC Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS it will be
releasable to the general public, including foreign nations.

RADC-TR-90-131 has been reviewed and is approved for publication.

APPROVED:

NORTHRUP FOWLER III
Project Engineer

APPROVED:-4.
(amod .Urtz, jr.
Technical Director
Directorate of Command and Control

FOR THE COMMANDER:

IGOR G. PLONISCH
Directorate of Plans and Programs

If your address has changed or if you wish to be removed from the RADC mailing list,
or if the addressee Is no longer employed by your organization, please notify RADC
(COE) Griffiss AFB NY 13441-5700. This will assist us in maintaining a current mailing
list.

Do not return copies of this report unless contractual obligations or notices on a
specific document requires that it be returned.

S/I



REPORT DOCUMENTATION PAGE OpM.,
pwi.ftsulso %mm~ Pf bhe aomium ~.m 4I~ 1" IWW Ofte. I "d GlW o mintq fuInsw au dW m M4 iao

,4.,34. INW 09 d kMM a, 0WU3n Wuimem WW*Wdft" wm a mm y wW ed a .al e tm34,.

m~ose* i03I Edft~h~yAlw. Cd itMin &a0 NUCO "Ohnam. mIf~ DC 2W03

1. AGE14•Y USE ONLY 4MW, 8IWW 2. REPV D.ATE REPO"TTYPE AND DATES COVERED

July 1990 Final Oct 85 - Sep 89

4.11TLEANO• SU5 5 FUNDING NUM3ERS

THE AMPS C - F19628-89-C-0001
PE - 62702F
PR - 5581

A A. 5) "TA- 27
W U- 20

Brtce L',wson, David S. Day, Alice Mulvehill

~.PERP&IPNG W~A2AM4ZAMiON NA1AS) AND ADDREWSS) IL PERFORMING ORGANIZATION
AEPO~tT NUM8ER

The MITRE '2orporatio4 N/A
Burlirgtin Road
Bedford MA 01730

a.l, W-WRINWONNOrING" A•JNCY NAWE(S) AND ADOES..ES) 10 SPONSORING&IONIORI NG AGINCY
REPORT MJMBER

Roma! Air Development Center (COE) RADC-TR-90-131
Griffiss AFB NY 13441-5700

11i. S"ULPeMINTARY NOTES

RADC Project Engineer: Northrup Fowler III/COE/(315) 330-7794

12L. OISTPUT1ON4MWLz&TV STATMMN 12b. OITRAUITION CODE

Approved for public release; distribution unlimited.

I)The major product of the AMPS project is the CAMPS System, the purpose of which is to
provide a domain-independent base on which to construct application-specific planning systems.
The target applications for which CAMPS-based systems are most applicable are characterized
by problems that are highly constrained, and that Involve the scheduling of tasks and the
allocation ofrources. CAMPS Is the outgrowth of a number of distinct strands in Artificial
Intelligence 14l4,research, but the core problem solving approach is that of
constraint-satisfaction search. The CAMPS collection of tools and predefined domain-
Independent knowledge structures are used to construct a description of a problem in terms of
variables and constraints. The planning process carried out by CAMPS consists of finding a set
of values for each of these variables that satisfies all of the constraints imposed by the

main. Two application systems were built using CAMPS: AMPS and EMPRESS-UI.

f - 4.

44.4 I ltT! l ll7l7 IS , UIRA0i PAGIS

Artificial Intelligence, Constrained-based Search, Planning, Resource 104
Allocation, Scheduling, 

I& 0-----

Y. 3 SErcA ry V- k&S_ W-AI I~& T LA5SWICATION 14SCURIT-LAWFUZA 2a IJMTAT"O OF ASSTPACT

-' ' SSIFEDE DD UNýrCLASSIFIED SAR

l, ,P U ,, AW s M IS

7""I



Contents

1 Introduction 1

2 Executive Summary 2

3 The AMPS Project in Context 4
3.1 Planning and Scheduling with Constraints: An Introduction ............ 4
3.2 Controlling Search in Planning . ........................... 9
3.3 Enriching Constraint-based Problem Solving ................... 10
3.4 Planning under Uncertainty ............................ ..... 12
3.5 Meta-Planning ......................................... 12
3.6 Interacting with the World .................................. 14
3.7 Summary ............................................. 15

4 The CAMPS Architecture 16
4.1 Introduction ........................................... 16

4.1.1 Using CAMPS as a Planning Tool ........................ 17
4.2 The Structure of Plans in CAMPS ............................. 20

4.2.1 The Plan Element Hierazchy ............................ 20
4.2.2 Viewing PlaPnning as Constrained Slot-Filling ................. 21

4.3 Constraints, Rules and Predicates ............................. 22
4.4 Variables: Their Structure and Function ......................... 24

4.4.1 Preliminaries ...................................... 24
4.4.2 CAMPS Generators .................................. 25
4.4.3 Selecting Candidates based on Restrictions .................. 26
4.4.4 Prefiltering Generator Candidates ........................ 28
4.4.5 Applicability and Efficiency Considerations .................. 30

4.5 Problem Solving Strategies and Metaplans ....................... 32
4.5.1 Metaplans ........................................ 32
4.5.2 Metagoals ........................................ 33
4.5.3 Viewing Plans as Trees of Tasks with Associated Resources ...... .33
4.5.4 Plan Repair using Delta-tuples ........................... 35

4.6 Scheduling ......................................... 36
4.6.1 Description of a Schedule .............................. 37
4.6.2 Tasks ........................................... 37
4.6.3 Resources ........................................ 38

4.7 Hypothetical Worlds ...................................... 40
4.7.1 Multiple Hypothetical Worlds ........................... 41
4.7.2 Hypothetical Worlds and Comparison with ATMS ........... .. 41
4.7.3 SOMECS ........................................ 42

4.7.4 Private Worlds ..................................... 43
4.8 The Relational Database ................................... 44

4.8.1 The use of RDBMS in CAMPS .......................... 44
4.8.2 Required RDBMS Features ............................. 46
4.8.3 Update Notification .................................. 47

i



4.9 Interface ....................................... 48

5 Using CAMPS in a Domain Application 50
5.1 AMPS-Tactical Mission Planning ........................ 51

5.1.1 AMPS System Implementation ....................... 52
5.2 EMPRESS ..................................... 53

6 Lessons Learned 56
6.1 The CAMPS Plan-Element hierarchy ....................... 56

6.1.1 A link that connects several components of camps ............. 56
6.1.2 Remote slots . ................................. 57

6.2 Interaction with the relational database ..................... 58
6.2.1 Compatibility of CAMPS with a commercial database ........... 58
6.2.2 The database as a link to the external world ................ 60
6.2.3 Working memory and the database .................... 61

6.3 Constraint and predicate evaluation ............................ 62
6.3.1 Simple constraints lead to large numbers of slots ............... 62
6.3.2 Effects of slot filling order .............................. 63

6.4 Slot candidate restriction ................................... 63
6.4.1 Look ahead capability ................................. 64
6.4.2 Detecting versus avoiding violations ....................... 64
6.4.3 Generation of corrective suggestions ....................... 65

6.5 Problem solving strategies (metaplans and agendas) ................. 66
6.5.1 Use of metaplans for initial planning ....................... 67
6.5.2 Difficulty of backtracking .............................. 67
6.5.3 Controlling alternative fix-it strategies ..................... 68

6.6 Resource tracking ........................................ 69
6.6.1 Quantized pools vs. pool sets ............................ 69
6.6.2 Types of resource utilizations ............................ 70
6.6.3 Individual vs. group tracking ............................ 72

6.7 Hypothetical planning ..................................... 72
6.7.1 Hypothesizing is explicit and assumptions are atomic .......... .72
6.7.2 Minin-izing the creation of alternative variables ............. .. 73
6.7.3 Values that can be hypothetical.. ......................... 3
6.7.4 Building worlds on top of other worlds .................. 74
6.7.5 Using hypotheticals for contingency plans ................... 75

7 The Future of CAMPS as a 7 ool T7
7.1 Plan Element Hierarchy .................................... 77
7.2 Database Tools ......................................... 78
7.3 Metaplams, Constraints, Rules, amd Predicates ..................... 78
7.4 CAMPS Interface Tools .................................... 79

8 References 81

A Filter-t ees and Evidence Combination in CAMPS 84
A.1 The Generator Filter-Tree .................................. 84

ii



A.2 Evidence Combination in CAMPS ........................ 84
A.2.1 Evidence combination starts with direct evaluations .......... .. 86
A.2.2 Evidence combination and rule evaluation ................... 86
A.2.3 Evidence combination and predicate evaluation ............. .. 88
A.2.4 Evidence combination and constraint evaluation ............ ... 88
A.2.5 Evidence Combination and Overall Candidate Evaluation ....... .89

A.3 Filter-Tree Eamples ...................................... 90

AooesstOu Por

DTIC TAB C

U1I~uiaouncod|justirioation --

~~10By
D__st rilvut o• ,.a/_

Av' SA, .v Code

IA id/or



Acknowledgements

The AMPS project has involved the efforts of many individuals over a period of years.
Most prominent among them was Dr. Richard Brown, who developed the original design for
CAMPS and was its project leader for most of its duration. Others who have played a role
in CAMPS are: Tom Antognini, Matthew Cox, Bruce Dawson, David Day, Eric Gnat, Tim
Howells, Leonard Joseph, Dave Krieger, Richard Marcotte, Stuart McAlpin, Alice Mulvehill,
Alice Schafer, Ira Smotroff, Ann Tallant and Monte Zweben. Bruce Dawson has been involved
in the development of CAMPS the longest, and is the most intimately familiar with its code.

Although this document was written and edited primarily by the three listed authors, we
have in some cases taken freely from other AMPS reports and documents. While in the end
we are responsible for the content and scope of the report, we owe a significant debt to all of
these former contributers to the AMPS project. We also wish to thank Dr. Eric Braude and
Dr. Mark Nadel for help in the final editing of this report.

We would like to thank Barry Press of TRW for letting us participate in his knowledge
acquisition sessions and introducing us to the planners of the 9th Air Force. These planners
contributed valuable domain expertise, particularly Major Edward Ashley and Major David
Waterstreet, who spent several days working with the developers here at MITRE.

Finally, we would also like to thank Dr. Northrup Fowler III, for his interest and support
during the course of this project. As we begin the development of yet another system based
on the CAMPS architecture, we must thank Dr. Fowler for his continued encouragement.

We have learned much in the course of this project about applying Artificial Intelligence
to the difficult planning and scheduling problems found in the real world. We hope that
the CAMPS architecture will prove useful to othW.r scientists and engineers facing large-scale
plmaning and scheduling problems. We further hop- that the introduction of a new, more-
portable version of CAMPS will promote its use by other researchers and developers.

iv



1 Introduction

The AMPS project was begun at MITRE in October 1985 with Air Force funding. It began as
an outgrowth of MITRE's KR.S project, which planned offensive counter-air missions. CAMPS

is a knowledge-rich constraint-based planner whose development was intended to contribute
to research in the portability of planning systems to new domains, meta-level reasoning,
dynamic reactivity to changes, and declarative styles of plan specification. The principal
accomplishments of the program consist not only in the progress made on these specific
research issues, but also the very integration of and interactions between them. This report
puts the CAMPS system in perspective, describes its architecture, recounts the challenges of
its implementation, the applications built using the system, reports on lessons learned, and
describes the future of CAMPS.

An abbreviated overview of the CAMPS system can be found In the Executive Summary
(Sec. 2). Section 3 places the AMPS project and its technical goals in context with other
related Artificial Intelligence research. The major architectural elements, their structure and
function, are described in Section 4, while Section 5 and Section 6 comment on two of the
CAMPS application systems and the lessons learned in carrying out this ambitious project,
respectively.

Appended to this finial report is a selection of papers written about CAMPS for publication
in various journals and proceedings. These articles concentrate on specific research topics
touched on by the CAMPS architecture, and are included here for the interested reader.

•=== .•_.1



2 Executive Summary

The major product of the AMPS project is a domain-independent planning system, referred
to as CAMPS. Two application systems were built using CAMPS: AMPS and EMPRESS-Ii. With
the exception of Section 5, this paper will be concerned mostly with describing CAMPS, with
occasional forays into the AMPS Air Force tactical air mission domain in order to illustrate a
point more concretely.

The purpose of the CAMPS system is to provide a domain-independent base on which to
construct application-specific planning systems. The target applications for which CAMPS-
based systems are most applicable are characterized by problems that are highly constrained,
and that involve the scheduling of tasks and the allocation of resources. CAMPS is the
outgrowth of a number of distinct strands in Artificial Intelligence (AI) research, but the
core problem solving approach is that of constraint-satisfaction search. The CAMPS collection
of tools and pre-defined, domain-independent knowledge structures are used to construct a
description of a problem in terms of variables and constraints. The planning process carried
out by CAMPS consists of finding a set of values for each of these variables that satisfies all
of the constraints imposed by the domain. 1 This notion, basic to the operation of CAMPS, is
described in some detail in Section 3.

The major contribution oI CAMPS has been to build from this abstract problem-solving
technique a powerful tool for solving real-world problems. To do this a number of Al tech-
niques we-e brought together, and some new techniques developed and/or refined. These
disparate techniques are described in detail in the body of this report, but they are briefly
outlined below.

* The adoption of declarative knowledge representation formalisms throughout CAMhPS
was an important component in assuring the utility of the core system and providing
for the easy addition of new, domain-specific knowledge to that core.

Virtually all of the knowledge in CAM PS is organized around an abstraction hierarchy,
known as the plan-element hierarhy. This provides all the usual mechlaisms supported
by such structures, such as inheritance and the definition of new objects by "mixing"
together already defined ones.

* Control knowledge in CAMPS can be encoded in what are called metopklns. This knowl-
edge is called on to select the most appropriate control strategy given a variety of
domain-specific contexts. It is a basic assumption of the CAMPS architecture that the
planning process is a knowledge-rich enterprise, and opportunity is taken to enable this
knowledge to be captured within the system.

in fdt CoGstraints in CA1WS ane weighted by their isiportance and so there are contexts in which the
violation of some unimportut constraints is allowed in order "ot to vie mute important omitraints, This
is describod in Section 3 and Section 4.

2



* Unlike many o-zher constraint-based planning systems, CAMPS develops plans at many
different levels of abstraction. This is useful not only to communicate to users at the
appropriate level, but as a means for controling the combinatorial search that would
otherwise result when trying to solve large, real-world problems.

* CAMPS is a mixed-initiative system. At any time the user can specify as much or as
little of a plan as desired. The user can elect to have the system generate all or only
parts of the rest of the plan. To best support this give and take between system and
user, a rich set of graphical and textual interfaces are provided.

* The system supports re-planning. Re-planning includes the ability to re-plan on the ba-
sis of detecting a change in the "external" world. These changes a-e detected by active
monitoring that can be set up via the relational database called update notification.

* Not only is the database used to interact in a standardized manner with other pro-
grams and intelligence sources, but CAMPS enables domain knowledge to be stored in
the standard relational database system, thereby reducing the sometimes significant
memory requirements made by conventional Al data structures.

* During automatic planning, selecting values for variables can mako we of the local
planning context by virtue of constraints posting restrictions on that variable. In this
way signficant amounts of backtracking can be avoided during constraint-satisfaction
search.

* CAMPS supports the use of hypothetical tworlds. This mechanism enables multiple plans
to be generated in order that they may be directly compared, without incurring an
inordinate computational cost. hi particular, metaplans designed to fix constraint
violations can perform possibly quite complex operations on the developing plan which,

if ultimately unsuccessful, can be removed quickl"y and cleanly, without requiring the
caxeful "undolng" of those steps. Often, such "fixit metaplans" will be pursued in
parallel (uia interleaving) until the best procedure is determined.

The above list is meant to give an overview of the abilities and t•c•nques available to
the developer using CAMPS as the foundation of an application planning system, The rest oi
this report provides the interested reader with the details of why some of these features are
important, and generally how they were deMeloped and implemented in the CAMPS system.

In the immediate future we intend to make the domain-independant core--CAUPS-

accessible and usable to planers in the application and research communities.

3



3 The AMPS Project in Context

CAMPS i8 the major product of the AMPS project. CAMPS is a multi-faceted Artificial Intelli-
gence (AI) system designed to provide a broad and powerful platform on which large planning
and scheduling applications can be built. CAMPS is multi-faceted in that it integrates a num-
ber of distinct AI techniques with a rich interface, enabling a "mixed-initiative" interaction
between the user and the system. In the chapter following this one we describe in detail
the separate mechanisms and techniques that have been developed and brought together for
CAMPS. In this chapter our purpose is to place these techniques in a larger context. We will
answer questions such as how CAMPS relates to other planning systems in AI, the types of ap-
plications for which the techniques used in CAMPS axe particularly well suited, etc. Planning
in CAMPS is based on the idea of constraint-directed reasoning, and so we begin this chapter
with an introductory discussion of this type of problem solving, along with a very simple
example. This is followed by a short historical review of planning. We conclude this chap-
ter with remarks on the difficult problems still facing automatic, knowledge-based planning
researchers and how some of the ideas deve')ped in CAMPS' approach these problems.

3.1 Planning and Scheduling with Constraints: An Introduction

The term "planning" in Artificial Intelligence refers to the process by which a plan of action
is established in order to achieve some goal. By a plan of action we mean simply an ordered
set of actions. It Is usually quite obvious how to develop a plan to achieve some goal.
For example, if one wants to buy something at a particular store, it is a trivial matter to
determine the ordered steps by which this goal can be attained. One can easily imagine a
plan something like: Leave the house; wilk down the street to the store; choose goods and pay
for them; return to the house. Indeed, it is often the case that the steps to be taken are so
automatic that it is more difficult to state them explicitly than to actually carry them out.
For example, if we had really been assigned the taak of buying something at a store, would
our plan have included the usually automatic action of cldoing the house door behind us as
we leave? Would our plan have specified the need for looking both ways before crossing any
intervening streets? While we probably would carry out these steps, it is not clear that we
would have explicitly considered them in our "planning process." Indeed, bome researchers
have argued that we do not even employ such an inte, -l data structure as a peon in the
first place.[9] Our inability to unambiguously introapect on our own problem solving skills
has proven frustrating to the many efforts that have attempted to automate the planning
process. With only sketchy ideas as to how we ourWves approach the solution of such
problems, computer scientists have been left with little guidance in their search for methods
by which successful plans can be generated automatically. The planning paradigm in Al has
been defined partly by the types of problems it attempts to solve, and partly by the methods
employed to solve them.

Planning can be distinguished from other tasks in Al by its synthetic nature: planning
is a constructive procesi. In contrast, much of Al has been devoted to automating analytic
tasks, where a set of data is presented and the problem task is to appropriately categorize

4



the data. Medical diagnosis is perhaps the most prototypical example. Planning also starts
from a set of data: a description of the world and a goal. While planning may indude the
categorization of the initial or goal states in the process of generating a plan, the result of
the planning process is nothing like a classification. In order to "acieve a goal in eve~i very
simple domains it is usually necessary that a significant number of actions be performed in a
very particuler sequence. The "output" of the planning process-a plan-can itself be quite
complex.

There have been many proposals ior how best to conduct automatic planning. Perhaps
the most natural, especially in light of the early work that first established Al, has been to
view planning as a search problem in which different orderings of the allowable primitive
actions are constructed until the desired goal state is achieved. To conduct such a search
requires two important abilities: the planner must be able to detect when a certain ordered
set of actions will be successful, and the planner must have. some heuristics to guide its search
at least approximately in the right direction. Without the former, a planner would have ao
halting condition, and so would be doomed to search forever for a successful plan; without
the latter, a planner would be able to find a successful plan if one exists, but it would likely
take a very long time. The manner in which these two abilities are established by different
planning mecharisms provides a useful way to distinguish alternative theories of planning.

The dominant method used by AT planning systems for testing whether a plan will be
successful or not has been to construct an explicit, propositional description of the 'world"-
that is, the task environment in which the planner's actions are intended to be executed. To
determine if a particular plan will achieve the desired goal in this model of the world the
planner simulates the execution of the plan and then teits whether the resultant propositioral
description of the world is consistent with that described by the goal state. In this discussion
we will refer to such planners as model-based planners. As an example we can take the well-
known "blocks world" domain, in which the planner is assigned the tsk of placing toy blocks
in certain relationships with each other. A set of propositions describing one state in such a
world might look something like this:

(and (on blue-box green-box)
(on graen-box table)
(on red-box table)).

In order to determine whether a particular plan achieves a goal, the planner models the
effects of each action in the plan by adding to, or deleting from, this &et of propositions. It is
then a straightforward matter to see whether this description is consistent with a goal state
description, say (on green-box table).

The other essential ability for model.based planners is to conduct the search for plans
to that the combinatorial costs are controlled. The problem in constructing an adequate
plan efficiently for even smple domains is that steps in the plan interact with other steps.
In the blocks world example this can be seen if we consider planning for the goal (and (on
blue-box table) (on red-box blue-box)). If the first step of a plan mvers the red-box



onto the blue-box then moving the blue-box onto the table may be impeded (for example,
if the manipulator can carry only one block at a time). Sometimes these interactions are
actually desirable, but most often they lead to plans that fail. Generally, this is the major
reason that the planner needs to search through many different plans before finding one that
actually works.

There are many ways in which model-based planning systems have attempted to control
the search process. We will return to a discussion of these. methods in the next section of
this chapter.

Constraint satisfaction techniques provide another view of how to conduct the planning
process (aad problem solving, more generally). In constraint-based planning, the world is
not modelled directly as a set of propositions. Instead, the important parameters or features
that determine a plan axe identified and associated with variables, and the relationships that
must hold between features in any successful plan are described separately. In this model
of probkm solving, theu, a problem is cast as a set of variables and a set of associated con-
straints. The constraints require that certain relationships hold between the values assigned
to the variables involved in the constraint. A valid solution is any assignment that respects
these required relationships. Thus, rather than requiring that a plan be simulated to verify
that it is able to achieve the stated goals, the process of generating a plan is itself a means
for verifying its correctness.

To see how this works, consider a simple example. For simplicity, we will not provide
a particular interpretation for these variables and their values, but it is easy to imagine
that the variables correspond to plan steps and that the numerical constraints between them
are intended to enforce temporal ordering relationships. We can associate with the three
variables A, B and C the following three constraints:

A<B (1)
B>C (2)

A = B - C (3)

Solving the problem (generating a plan) requires finding an assignment of numbers to the
three variables such that these constraints are satisfied. For a given domain of values, the
problem solving process must seasch throdgh the possible assignments in some order until all
three constraints are true of the values of the variables. Finding these assignments requires,
at the outset, that all of the possible va-lues for each variable is specified (where this may

-include the specification of a function that can generate all the possible values). For this
exanipl-, we make the requirement that the domain of permissible values for each of the
three variables is (1, 2, 3, 5, 7, 9, 10, 12}.2

2We have chosen thefe riumbers in order to emphasize that a CSP may constrain the domain of its
variables iin any Arary fas..iou, and of course, they will very often not be numbers but elemenr from sets

of objects appropriate to the domain. If the domain were limited to variables that took on only integer or real
wimbero, then CSPs could be solved very efficiently by solving the algebraic relationships defined by the sets
ol constraints. C.•xws does use algebraic simplification whiŽnever possible; but in general, solving arbitrary
CSP2 miust rely or general weArch techniques.

6



There are innumerable ways of conducting a search through the set of possible variable
assignments to find an assignment that causes no constraints to be violate(-. Indeed, how
this search should be carried out is the central concern in the study of :onsrraint-directed
reasoning. Probably the simplest technique used is that of depth-hi-st search, with backtrack-
ing. In this approach, one variable is picked arbitrarily, say A, and it is assigned a value,
also arbitrarily, say 1. At this point all of th ! possibly applicable constraints are checked to
determine if the assignments so far have caused a violation.

If no violation has been detected (as it would not have been in this example so far, since
this is the first variable assigned a value), another -variable is selected and assigned a value.
If the next variable assignment made were B = 1, then when constraints are checked, the
constraint A < B would be viola td. At thia point backtracking would commence, first by
trying all other iralue assignmev 3 to the last variable assigned. If a value is found that
produces no violations, the process continues forward. If, however, no adequate value is
found, then the variable is left without aa assignment and backtracking moves back to the
next previous variable. In Figure I the complete search for this example problem is displayed.
The solution discovered by thir .carch is A = 1, B = 3 aad C = 2.

.,A B 1 +- --

B= 2 - C = 1 4,

C--,4--3

C=12.-.
-,B =3- C= 1-

1.(--2

Figure 1: The depth-first search tree for the CSP example. The right arrow (-i,) denotes the
selection of a variable to 4e waigned, = denotes the assignment of a vallue to tON* variable, and
the left anrow (4--) denotes a constraint violation that le-ts to bWcktracking.

One of #he first things to note is that there !a more than one solution poaswib. In this
example, adding 1 to each of the variable v"ahs will preserve the coni-steocy of the solution
(but this cannot be repeated, given the explicit limitation placed on the range of permissible
-vlues for each variable). Which solution is found by the constraint satisfaction proce will
depend upon the order in which varia~ks are Wdected and the order in which their possiile
values are assigned. Standard constraint satisfaction assumes tha every feasible olution is
equallýy desirable. CAM PS allows con traints to be specified that have different strengths, or
degres of importance. Including sudh 'soft" constraints increases the exprestiive power of
the syitec-m, but also increases the computational cost of solving a problem. We will return
to this issue later in thin document. (See, for example, S9c. 4.43, Sec. 4.4 and Appendix A.)

Another point worth noting is the relative rigidity of constraint-based planning. In the

7



process of generating a plan with a classical (model-based) planner any number of actions
might be generated that will form the resultant plan. In this example we see that constraint-
based planning assumes that a certain set of actions has already been established (in this
example we have referred to thnm simply as A, B and C), and it is only their relative ordering
that is being "planned." CAMPS has overcome this basic limitation of the CSP formalism by
enabling abstract tasks (or goals) to be expanded. This process generates new variables over
which the constrairnt-based planning mechanism works. We discuss this further in Section 3.3
and in Section 4.5.3.

Finally, a point of great importauce is that the amount of searching required to find a
feasible solution is strongly effected by the order in which variables are selected and the
order in which values are assigned. In the example above, if A had been the last variable
selected, lollowing B and C, the number of search steps would have been increased from 14
to 85. (And by adding one more constraint, C > 6, the number of search steps could have
been incrc.ýsed ,veD. more, to 410.) Siusple depth-first search with backtrack (as illustrated
here) has an exponential computational complexity, that is 0(mr), where n is the number of
variables a"d m is the number of possible values for each variable. This presents unreasonable
demands on computing time for any but the most limited problems; for larger problems there
will have to b- some mechanism employed for pruning this search space.

Techniques for pruning the search space consist of imposing an order on the selection
of either variables or values. For instance, in the example above with the addition of the
constraint C > 6, the search could be significantly pruned by simply reversing the order in
which values are tried, starting at the largest values and decreasing by one on each constraint

violation. The problem is how to enable a problem solving system to automatically derive
this desired ordering of values. In the CAM PS system there Is a mechanism referred to as pre-
filtering (see Sec. 4.4.4 and Appendix A) that for most situations manages to order possible
values ia a desirable way. This is a technique closely related to "Waltz-filtering" (see., for
a discussion of this and other techniques: [401, [291 and [15]). Another, more widespread
means of pruning the 8earch space is by controlling the order in which variables are selected.
This, too, is used to great advantage in CAMPS. In tins case CAMPS has largely emphasized a
knowedge-rith approach, in which specalized orderings, called rmeta-plans, apply for planning
particular types of goals. We will compare and contrast these methods with other approaches
in Section 3.5. In Section 4 we decribe in detail how these ideas are carried out in the CAMPS
architecture.

So far we have limited our discussion of constraint processing to a small example of
simple mathematical relationships. As we mentioned before, this same mechanism can be
used for planning and scheduling when the problem is described appropriately. For example,
variables might take on values that indicate the type of action that will be taken at some
point, br at what time an action should be scheduled. This is how CAMPS represents planning
&nd scheduling problems and thereby allows them to be solved using constraint procesing

tedniques. The particulars of how CAMPS supports the formulation of planning problems as
oantxar•ut satisfact.On problemws (CSPs) are left until Section 4.

8



3.24 Cnntro'lling Search in Planning

The central problem in planning is controlling the search process. The previous section
provided an introductory description of constraint-based planning and how it differs from
what we have called model-based planning. Notwithstanding their structural differences,
both approaches rhare the problem of how to focus the attention of the planner on just those
parts of plans that are most likely to lead to complete plans that will be successful when
executed. la thit section we will describe generally the approach to control taken in CAMPS

and compare it to related work in planning.

How can a planner choose successive steps in a plan so as to minimize the amount of
backtracking? AI planning technology has made some tentative progress towards this goal.
Early planners, such as HACKER and GPS developed general search algorithms that attempted
S, red-ce back~racking. HACKER [38] adopted the so-called "linear assumption" as a first
step at guiding the search process. The planner attempted to achieve each of the separate
aspects of the desired goal state in turn until an interference between steps was detected.
At this point HACKER would backtrack to the previous choice point (operator selection) and
select an alternate operator, backtr-.,ing as far back as was necessary to avoid negative
subgoal interactions. V" le tanis is a depth-first search strategy, the linear assumption was
meant to start the eedxch out with a relatively good initial plan. Gps introduced means-ends
aualysis, a search technique that corr'ined forward and backward chaining: forward chaining
by selecting operators tfat ,nost reduced the di1I'rence between the current state and the
goal state, a•4 bacaward chaining on the ,.e-conditions of the operators selected.

Both of thee approaches improved planning performance over blind depth-first search
on small problems, but larger prohlems renmained fur too expensive. In general the problem
seemed to be a failure to look ahead and see •he ramifications of lozal decisions to those
later on in the plan. Specifically, torme plan decisiov, are more important. than others, where
importance is ictermiuied by how difficult It is for the planner to achieve the sub-goal in
a. vaxriety of ways. Such constraining Nlaa, ucisions should be made earlier than others
so that the less importut steps need tiot be re-done. .'13STRIPS [33] was a planner that
estabiished an explicit ranking of the importance of different *ypes of sub-goals in a plan. By
plaulning for bighb" ranked sub-goals first, .FBSTRLPS managed to avoid significant amnunt;
of backtracking.

NOAp [34] was tha apotheosis of this line of rn.sewrch. and was the basis o" wany subse-
quent plarnning sysiems over the following decade. In NuAU, not only is there a hierarchy
with respect to gals, bixt cperators themselves are hicrarcl,?ally organized, so that plhning
at successive levels of detail introduces as little ordering among plan steps as possible. Only
very late in the planning process awe plan stepR lin, .rized-the partial ordering is replaced
by a completely nrdered sequence uf plh.n steps. Since It is generally the relative ordering of
plau steps that introduce Degab'ive interutions among them, dela):ag a commitment allows
the planner to order the plan steps "correctly" from the beginning, with less backtra -king.
NOAH and its many descendents are known as nor-linear, hiernrchicoal planne-., kExamples
include NON LIN (39],3 Sin [43], TWEA. (10], among others.)

3 Actually, ONLA is not a descendent of NOAH, but was dev3apM by Austin Tate independently and

9



In order to know when to introduce linear ordering in the developing plan, NOAH-style
planners must provide "critics"--specialized modules that detexmine when certain types of
plan steps should be ordered. In general, it is still difficult in these planners to maximally in-
fluence the selection of operators and their ordering as a function of their possible interaction
with subsequent plan step choices.

MOLGEN [35] was the first constraint-based planning system.4 Its strength derived from
its ability not only to minimize the degree to which the planner committed to certain plan
steps (so-called least-commitment planning), but the way in which each minimal commitment
to a plan step provided additional constraints for other plan step choices. The restrictions
these constraints entail are propagated to all the other variables. Propagating constraints can
be viewed as a method of pre-ordering the selection of variable values. In the planning process,
as a variable's value is set, then any other variables that are involved in constraints with the
original variable have available to them important information. For example, referring back
to our mathematical example earlier in this section, if there is a constraint A < B, and
A has already been assigned the value 4, then there is no need to consider generating the
values 1, 2, 3 and 4 as possible assignments for B, since they would dearly violate this
constraint. The effect of "propagating a constraint" in this case has the effect that the
process of generating values for B effectively excludes these values. In CAM PS this process is
called "posting restrictions" and is discussed in more detail in Sections 4.4 and 6.4.

CAMPS is based on MOLGEN'S notion of constraint satisfaction problem solving employ-
ing constraint propagation. Propagating constraints is one of the most powerful means for
limiting backtracking in a domain-hidependent manner. This technique is particularly useful
in planning, since, as we have noted, backtracking is brought about in planning by unan-
ticipated interactions between plan steps. By propagating constraints, a planner is able to
dramatically decrease backtracking, since these interactions are in some sense anticipated,
and therefore avoided. CAMPS brings to this general model of problem solving a num-
ber of mechanisms designed to significantly improve the construction and performance of
constraint-based planning systems.

3.3 Enriching Constraint-based Problem Solving

CAM PS is a general constralnt-based planning system. It is domain-independent and designed
to support the development of planning systems for a very broad range of tasks. Particular
emphasis has been placed on scheduling and resource-allocation types of problems. Because of
this design philosophy, generating a particular planning system with the CAMPS core requires
little to no programming.5

roughly contenmporaneously with Sacerdoti's NOAH.
41t was not the first congtraint-based• prom~eti veong system, however. That distinction probably goes

to Richard Fike's REP-ARF system (III for solving certain mathdea problems with conmtraint problem
solving.

'The extent of required programming depends atrosi*ly on specifics of the domain and the intended run-
time efficiency of the planner, amoug other thing. Details ue gien in Section 6.

10



There are a number of ways in which developing a domain-specific planner from CAMPS

has been made easy. First of all, CAMPS views the variables of standard constraint satisfaction
problems as slots in a hierarchical knowledge base. Instead of attempting to describe a
complex planning domain in terms of a "flat" list of variables and associated values, CAMPS

allows the developer to define a rich hierarchical tree of concepts and concept instances.
This basic and powerful tool of Artificial Intelligence enables a domain to be described in a
structurally appropriate manner. This hierarchical knowledge base is called the plan element
hierarchy in CAMPS. (See Sec. 4.2.1.)

The plan element hierarchy supports inheritance. This adds an important inference mech-
anism to the standard constraint-processing repertoire, reducing the need for system builders
to use awkward constraints to express basic structural relationships between elements of the
hierarchy. It is in this hierarchy that the system developer can establish hierarchical rela-
tionships between tasks and subtasks, for example. As we have discussed before, hierarchical
planning was used in model-based planning to delay commitment to the ordering of plan
steps. By supporting task/sub-task relationships in the CAMPS plan element hierarchy, the
same advantages can be added to a constraint-based planner as wel.6

Supporting the ability to describe task/sub-task relationships is an important facet of
the CAMPS architecture, for it serves to broaden the applicability of CAMPS-derived systems
beyond standard scheduling problems. While there is some ambiguity associated with the
terms planning and scheduling, it is generally agreed that scheduling refers to the process of
assigning times to specified processes (actions, events). The original selection and relative
ordering of those processes is presumed to have been taken care of by some preceding planning
process. CAMPS enables the complete integration of both plauning and scheduling in this
sense, for the selection and expansion of tasks and their constituent actions (or sub-tasks) is
explicitly controlled in CAMPS'S constraint-processing approach to problem solving.

This can be contrasted with many other constraint-based problem selving systems. For
example, the isis system [19, 18] is a constaint-based scheduling system that addresses similar
issues as those of CAMPS, especially with respect to its use of Al knowledge representation
techniques and weighted constraints. But isis explicitly sidesteps the planning part of the
problem (alloting this task to a pre-processing search phase) and concentrates instead on
other issues in constraint-processig, such as constraint relaxation."

It was a design.goal In CAMPS that a system developer need write almost no computer
code at all when constructing an application system with CAMPS. Besides variables (defined
in CAMPS as slots of elements in the plan element hierarchy), the definition of a planning
problem as a constraint satisfaction problem requires that constraints be defined, and that
variables be associated with generators that generate possible values in light of any propa-
gated constraints. CAMPS provides a host of pre-defined constraints and associated genera-
tors. Only rarely will the system developer have to write non-declarativoe computer code to

This in related, but uot identica,, to the notion of hierarchical wariaces. MOLGEN used certtai variables to
describe parts of a problem in more geneial ways, furthbt eaxtending the delayed commitment to a particular
plan ordering. Thewe type. of variables can be defined in cA.s as w•ell. See Sec. 6.4.

'Ewuplen of other a lednliag-speci~c systems iclude NLWUa [23] and [21].

11



implement specialized constraints; generally all constraints can be written as straightforward
rule-like structures, using the primitives provided within the CAMPS library. The details of
how constraints are defined are described in Section 4.3.

3.4 Planning under Uncertainty

The general constraint satisfaction formalism is usually restricted to constraints that return
only success or failure: a constraint is either violated or it is not. Planning in real-world
domains is not usually so cooperative, however. The effects on the world of executing some
action are not known with certainty. More importantly, in many domains it is virtually
impossible to generate plans with no constraint violations at all (the domain is said to
be "over constrained"), and the issue in planning becom~es which constraint violations are
"allowable," and which aren't. In these situations the system designer will want to be able to
express to what degree one constraint is important (or desirable) relative to other constraints.
A natural approach to this problem is to allow for constraints to be associated with real-
valued weights.

To make CAMPS a tool for generating plans in such domains required generalizing the
otherwise restrictive form of constraint satisfaction. Constraints are divided into classes:
feasibility, efficiency, etc. Any individual constraint is identified as enforcing a relationship
of one of these types. The certainty with which the violation of a constraint leads to, say,
the infeasibility of the plan, can be described by a number between zero and one. While we
will not describe the details of this scheme here (see Sec. 4.4 and Appendix A), it should
be understood that this provides the CAMPS-derived planner with a much greater flexibility
than one based on the original formulation of constraint satisfaction problems, In particular,
it allows a number of weak constraints to override some single stronger constraint. Any
constraints that are absolute can be so indicated (with a weight of 1 or 0), so the developer
need only make use of weighted constraints in situations where It is appropriate. Of particular
interest is the fact that the generators associated with vriables (which provide possible values
for a variable when one is desired by the planner) make use of these weights to select the
"best" value. (See Sec, A.2 for details.)

Uncertalntly places another restriction on a planner: uncertainty establishes the possibil-
ity that a planner's plans might fail, and so if the planner is to continue to pursue its goals,
it must-be able to generate a new plan. This is called re-planning, and is a unique feature of
the CAMPS system as compared to any other constraint-directed planning system. We will
discuss re-planning more in the next section.

3.5 Meta-Planning

SF• '" in Section 3.2 we described how propagating constraints in a constraint-based system
car, provide a domain-independent planner with a significant amount of information about the
interaction between plan steps so that backtraddng is minimized. This does not completely

12



obviate backtracking, however. Backtracking may still be necessary, for when variables are
assigned values early on, they are still under-constrained due to the fact that other variables
have not yet been assigned values.

The design of CAMPS is predicated on the belief that planning is a knowledge-rich en-
terprise. The classical formulation of planning has been shown to be NP-complete; that is,
it is probably intractable. [9] It follows from this that planning performance can be dra-
matically improved only by providing mechanisms by which control knowledge can be easily
encoded and applied in both general and very specific planning situations. For example, when
constraints are violated, very often it is possible to define application-specific methods for
debugging the variable assignments made so far. Such methods can be defined along a con-
tinuum of generality, including some appropriate to what have been called generic problem
types. (See, for example, [8] or (24].) Only when there is no specialized knowledge avail-
able need one take recourse to generalized ordering and/or backtracking methods. CAMPS
attempts to facilitate the application of knowledge to control planning in a number of ways.

CAM Ps enables the user to describe specialized control strategies. These control strategies
specify the order in which variables are to be assigned values. By supporting multiple control
strategies, specialized for particular contexts, CAMPS need not be restricted to a very general,
"weak method." Instead, any control knowledge available to the knowledge engineer can be
easily incorporated into CAMPS' (or a CAMPS-derived system's) control regimen. This control
information is encoded in mtnta-plans.s

As an example, for certain tasks in the Air Force tactical mission planning domain, it is
known that the fewest constraints are violated if the "time over target" is established first
when planning a particular type ol offensive counter air mission. This control knowledge
is retrieved by CAMPS when it begins to plan for such a task. At that time any and all
applicable meta-plans advertise their availability. CAMPS choOSes the meta-plan with the
highest ranking (which is usually the meta-plan that applies most specifically to the current
task at hand).

The notion of specialized control knowledge-or mosa-knowledge-was first introduced by
Davis in TEi RESIUS [11]. Later, Wilensky [42] applied the idea specifically to planning. Meta-
planning is a necessary component for any large-scale planning system, for only weak-methods
are general enough to solve problems independent of the application-specific knowledge, but
weak-methods are simply too slow to solve large problems in a reasonable amount of time.
Meta-control knowledge enables the architecture to support more domain-specific knowledge
without sacrificing the generality of the underlying architecture or its default problem-solving
methodologies.

The movement towards greater autonomy in Al planning systems is imperative, and this
is especially so for systems that are to be operated in a dynamic environment. In designing
CAMPS this issue was of particular importance, and meta-planning plays a critical role in
this regard. The classical view of planning Igno,"d issues in re-planning until recently; recent

'These ate called mcta-plans because they ptovide knowledge about how to control the planning ptoces;
they do not encode knowege aboot wha kin of pariula plans shomd be cmndertd.

13



work that addresses these concerns has tended to emphasize the minimal restructuring of
the current plan, and less the dynamic responsiveness of the planner with its environment.
(See [44], [1].) Far more important in our view is the means for responding to changes in
the environment quickly (relative to the domain) and intelligently. Here "intelligently" refers
both to the desirability for specialized re-planning knowledge, and also to the applicability
of real-time constraints.

CAMPS supports a large variety of what are called fixit meta-plans. These meta-plans can
be triggered by any number of conditions that occur during planning, including changes in
the world. In particular, they can provide a problem-specific approach that can be much more
efficient due to this specificity. Consistent with the declarative approach throughout CAMPS,

these meta-plans can be user-defined with little programming. Other work has shown the
power of specialized debugging knowledge, including such early work as Sussman's HACKER

and Sacerdoti's NOAH, and continuing through to McDermott's ground-breaking work on
planning and action [30] and Wilkin's sIPE [44]. What has only recently become a matter
of concern, however, is how to provide planning systems with sufficient knowledge about
their real-time constraints that they can select planning techniques with the appropriate
processing time/plan quality tradeoff. This approach to control has been referred to as
approximate processing [28]. A number of recent planning systems have demonstrated the
necessity and power of this kind of meta-planning. (See, among others, [14], [22] and [27].)

It would be impossible to provide a "complete set" of approximate processing meta-plans
for a domain independent planner-that contradicts the basic assumption that knowledge
about the dynamics of a particular environment can and should be exploited by the planner-
but CAMPS provides the declarative support that allows system developers to easily encode
this knowledge in a declarative fashion. In a later section of this document we will describe
two application systems built with CAMPS in which the use of dynamiczlly-triggered fizit
meta-plans played a prominent role. (See Chapter 5.)

3.6 Interacting with the World

CAMPS was built to support the development of "real world," large scale planning and
scheduling problems. Large planning systems will require large knowledge bases. The size
of ;hese knowledge bases will generally not be sustainable using the standard Al practice
of loading it all into the memory of one appropriately large computer. Even with virtual
memory, the performance degradation becomes untenable. Only recently has Al begun to
look at the integration of large, efficient external database. CAMPS was developed from the
beginning with these issues in mind, and the underlying mechanisms of the planner make
a distinction between knowledge that is "in working memory" (where this is the working
memory of the machine, not the Al notion of working memory analogous to psychological
models of "short term memory") and knowledge that is in the database (on disk). Constraint
operations are defined so that as little as possible of the knowledge base need be pulled into
working memory. The details of this mechanism are described in Section 4.8.

14



3.7 Summary

As we noted at the beginning of this section, the CAMPS planning system is multi-faceted.
Some of what makes CAMPS a unique system is due to its having succeeded in bringing
together a number of different strands of AI research and weaved them into a coherent,
general and potentially quite powerful core planning system. Along the way a number of
technical hurdles had to be addressed. Our successes in solving those problems, some minor
and some more significant, are steps of a process that is of growing importance to AL: bringing
the fruits of disparate and very origLhz' technological advances together into working systems
for large, real-world applications.

In the following chapters we will describe in much greater detail how the CAMPS architec-
ture is structured and the way in which it is used to describe and solve different problems. We
will also relate to the reader our experiences in using CAMPS. Over the development history
of CAMPS much more was learned about planning and scheduling than what is exhibited in
the current version of the CAMPS program.

15



4 The CAMPS Architecture

In this section we begin by providing an overview of the CAMPS architecture, along with
some discussion on how the elements of this architecture interact to provide a comprehensive
planning, scheduling, and resource management environment. More detail is then presented
on the major elements of the CAMPS system. A brief outline of this section should prove
useful to the reader. Section 4.1 gives an overview of the system and how it can be used. In
Section 4.2 the reader is introduced to the major data structures around which the CAMPS

architecture is constructed. CAMPS is, at its core, a constraint-based planning system, and in
Section 4.3 the various types and aspects of constraints are described. Constraints establish
that certain relations between variables be maintained. In CAMPS these variables are complex
structures enabiing them to support many of the AI and other techniques brought together
in the system. The structure and function of variables in CAMPS are described in Section 4.4.
(One part of variables-,filter tree--are treated in much more detail in Appendix A.) The
way in which metaplans are used to control the planning process is described in Section 4.5.

These sections will have given a largely complete introduction to the main parts of the
CAMPS planning system. I'n Section 4.6 we present some of the issues that arise in scheduling
and how CAMPS approaches these problems, including the treatment of resources and their
allocation. The use of hypothetical worlds in CAMPS is described in Section 4.7. CAMPS is
somewhat unique in its use of a relational database system to store knowledge and interact
with the "external world." This is discussed ik Section 4.8. Finally, the CAMPS interface is

described in Section 4.9.

4.1 Introduction

CAM PS is an Al-based problem-solver that incorporates constraint-based planning and nieta-
planning techniques. In CAMPS a planning problem solution can be viewed as a set of tasks,
the resources those tasks will use, and the schedule of tasks and resource utilizations such
that all constraints re siatisfied. The CAMPS architecture is a formalism and ; set of infer-
ence mechanisms in which all relevant fibtts about this type of planning application can be
declaratively represented. These •facts" include definitions of application-specific terms and
relationships among these teims, correctness and desirability criteria, and problem-solving
strategies (metaplans). CAM PS has been implemented in two domains, the Air Force appli-
cation of CAMPS called AMPS and the NASA/KSC application of CAMPS called EMPRESS-Ii.
These applications will be discussed in Section 5. In this chapter we concentrate on the
domain-independent core of those two application systems, which is CAMPS. From time to
time we will draw on the AM PS domain to illustrate architectural elements with concrete
examples.

The CAMPS architectere consists of Lhe following architectural elements (see [5] and (61
for details):

* A biwwWdge representation formalism in which all application-specific knowledge can

16



be expressed declaratively as constraints, rules, plan element objects and database
entries.

* A meta-knowledge formalism in which both general and application-specific problem-
solving strategies can be expressed in a predominantly declarative fashion, called meta-
plans.

o A relational database to contain ever changing situational data. This database is shared
among planning "workstations," intelligence analysis tools, and activity monitoring
tools (update notification).

o A working memory that contains the tasks, resources, and other information being
used and manipulated by the system. Working memory is dynamically filled from the
relational database, and consistent partial results can be stored back into the relational
database.

o A knowledge base containing all the knowledge and the declarative portion of the meta-
knowledge specific to an application, e.g., the plan element hierarchy.

* A user's toolkit (e.g., tables, graphics) with which to explore, display, and modify the
relational database, working memory, and the knowledge base.

Within this architecture, several facilities are uniformly supported, such as:

*Belief/disbelief evidence combination. This is used for iour different purposes: (1) to
U'soften" predicates and allow evidence to be flexibly combined; (2) to dampen out
inconsistencies among the rules in the system; (3) to quantify "how well" a sugges-
tion satisfies a number of constraints; and (4) to provide an a priori estimate of how
successful some suggested change will be in solving a planning probli-n.

*A uniform record of justification is maintained. This is used for three different purposes:
(1) to provide explanations of how and why the system made choices; (2) to assist in
deciding which selections and choices to replan; and (3) to avoid needless duplication
of effort.

o Hypothetical worlds. This capability provides the user and the metaplanning compo-
nent of CAMPS with an environment in which to hypothesize and test assumptions
about existing or anticipated conditions of the environment, e.g., weather, or about
the relevance of slot values, e.g., the best aircraft to use to fly a particular type of
tactical fighter mission.

4.1. Using CAMPS as a Planning Tool

The figure uCAMPS System Architecturew (see Figure 2) is a high-level picture of the ways
in Which CAMPS uses various declarative sources of knowledge: specifically constraints, rules,
and metaplans. Plan elemeits have constraints attached to them; these constraints are

17



checked as the plan element slots are being filled. Constraints are stated in terms of predi-
cates. To see if somec predicate is true, the rule interpreter may be invoked. This interpreter
uses a mixture of rules from a library and predicates directly defined (some in terms of the
relational database) to determine if predicates are true or not. The same rules are also used
to help figure out what could be changed in the plan element knowledge base to make some
predicate TRUE or FALSE.

METAPAN URARYWORKING MEMORY
how to... is akAUOLNE skt~u (multiple hypothetical worlds)

plan a project wcetk4ncy ;"nf i

plan a task time critically coustrAI ectpa tthpdl

Llaptn'with vlatloni s I et~Calchosd

aelect the best mealpian

* 2 ~ EVALUATOR

CONSTAINT 13RAR

......... .:..e.A MS.....ec u

CAMP sovesplanin prbles fREDCThE ue ytyn oaheecranmtpan

the cntro trtegiFirguired fo2nelgetpan. The CAMPS archtectre nclues
fAcilit thaolvets th n u prolm forml thes usoer bf trying to acl, thereb taloing CeAMPS toi

uoase itMpobler-plvning skilsithem usurseally ditngihthougwha CAIs" canopledg itha lipttleso
noe saintentio fetrem tne uoserawinthse of at' mtplannin allc~o drmteisionsc areasoninagl thet

trmedpniblt of thues usr, meand-knoldgerovuder aontexplit an [2erersettino

The CAMPS metaplanning component (3 provides a mechanism for p*stiog goals to the
system and utilizing a mix of declarative metaplans and procedural standard control flows
to accomplish goals. When new subpoals wre posted, new metaplans aie Instantiated to
accomplish these subgoals. The meulting hierarchy of active problern.-oving agent~s provides



global control over local planning actions (e.g., filling in a slot or checking a constraint).

A central feature of this approach to metaplanning is the separation of the meta-knowledge
into two parts, and the use of an active agent constructed from those two parts to actually
implement a problem-solving strategy (5]:

Metaplans are declarative meta-rules that can be easily manipulated, modified, and ex-
plained by or to the user. MetaplarLs specify what should be done to accomplish a specific
goal, but refer the issue of how that metaplan should be implemented to the agenda.

Agenda flavors are standard control and data flows. They constitute an easily extended
vocabulary for problem-solving. When one casually says "I use a generate-and-test algorithm
to select a consistent pair of X and Y," one has said both what ("select a consistent pair'),
and how ("use a generate-and-test").

Agenda instances are active objects with various pieces of code (flavor method handlers)
that serve to implement a specific control and data-flow. They act as agents that know how
to carry out the "what" specified by a metaplan.

The problem-solving agents provide CAMPS with a high-level, top-down view of planning
and resource allocation. However, problems with planning usually arise because some detail
is out of place. This defect in a plan is signaled to the metaplanning component via a
constraint violation. CAMPS provides three modes of constraint evaluation, one of which,
manke-mode, is intended to provide a low-level, bottom-up view of the planning problera by
producing a structure that suggests some action the problem-solver might take to resolve tlhe
problem and eliminate the constraint violation t26].

The ability to respond to unforeseen conditions in the environment (replan) is ano.her
major design goal of CAMPS. In order to aeve replanning capability, problem-solving
strategies and predicates must communica.te in an orderly wanner. Mttaplans typically
suggest ways of undoing 6ome planning decision in order to retain consistency with some
unforeseeable change in the pla1ning eovironment.

Throughout the CAMPS session, the user and the knowledge-based system try to work
together in a mixed-initiative mode where the user makes changes, CAMPS reports on new
conflicts, the uwer repairs some conflicts and asks CAMPS to take care of the rest. Any decision
CAMPS makes can be lter reviewed, questioned and changed by the user. Any decision the
user can make can also be delegated to CAMPS. CAMPS finds all itconsistencles in plans
being developed, but does not insist that the user remove inconsistencies (except for errors
of typing, e.g., using a, name where a number is expected or using a task where a resource
is required). Finally, CAMPS knows who mnade what Jcesion, and will not change a user
deision without at least telling the user, and generally alm the user's permission first.

CAMPS also provides a hypothetical planning environment by which users and/or meta-
plans can evaluate a series of candiate plans all somewhat appropriate for accomplishing a
goal. CAMPS utes a scheme similr to 116] to tag the hypothetical world in which a slot
i1 filled with a particular value. Alternative hypothetical worlds can be maintained and a
plan-element's slots can contain different values in different alternmativ hypothetical worlds.

19



In order to support planning in an envir,3nment where iifferent aspc-ts of the planning
problem are solved by different people (different agents are respon .Ile for some defined set
of Slots), CAMPS provides a foundation by whdcit support a multiple workstation environ-
ment. Although support to multiple workstations has not been implemented, the necessity
of supporting this planning environment can be easily understood by viewing how planning
is performed in one of the application domains to which CAMPS has been applied, In AMPS,

plans are generated to obtain targets through the contcerted errorts of a number of agents
(human planners). For example, intelligence officers provide intelligence information about
the existance and persistance of targets- officers at the wing level track the allocation and
usage of aircraft and pilots; and at the planning staff level plans are specified for creating
missions to hit delegated targets in a given time period with respect to the Commander's
guid-.mce of the day. One would envisioD a workstation for each of these planners.

Within a multiple workstation environment, different planners will want access to much
of the same information as other plan.•ners. CAMPS uses a database map','e.ne.t system
(DBMS) to provide a single, uniform interface for shared access to the data, even within
a distributed environment. Some PRMS allow concurrent modification of shared data by
multiple users. These multi-user Dksas make this irterface available concurrently to multiple
users. The multi-user DBMS ,u-es that the data are not corrupted and that incorrect
resuv. 2 are not produced due ta inappropriate interleaving of data processing operations
from different uaers. At al- prevents users from being permanently deadlocked (two or more
users holding data resouk. as while waiting for one another to release held resources) or from
being continually aborted and restarted.

4.2 The Structure of Plans in CAMPS

4.2.1 The Plan Vlement Hierarchy

A iong-stan'ing property of AI reasoning systems 6 thhat A generalization and specialization
through "a kind of" (AKO) hierarchies. Indeed, such hierarchics arp almost a trademark of
systems based on Al. We use the term "plan element" to refer to the most general notion of
"the things CAMPS deals with." A plan element is thus an "object" Li object-oriented working
memory. Each plan element is represented in working memory in a frame-like manner. The
attributes, parameters, and cross-references among plan elements are stored in the plan
element's slots. Plan elements in wnrking mmnaory are created from information in the
database by a process called instantiation, ad ' stored into the database by the installation
process.

In CAMPS, each cla&, of plai, elements is defined by a set of capabilities. A capability itself
is fuirther defined as a set of capabilities (called th, components of the capability), so that the
plan element class is the set of capabilities, their components, the components' components,
eLý. The capabilities thus form a so-called tangled AKO hierarchy (t5] [6]) (see Figure 3).

Each "capability" has associated with it a set of "slot descriptions." The set of slots
associated with an !Ldividual !nstarce af a capability is the union of the slots associated with

20



Plan-Element

Figure :Apnt ar-t i view osf ) C 'SALociation

th cpbiite o teClp-ass. Eahintc f landeet cpbltyh•cmltl

C Flight-h~ ~ii~ij ji ýy (cir-Fciit

CStrike.-Missi~onq (airbase

Ground-Su~________ra

Figure 3: A partUb view of tle CAMPS AKO hierarch~y.

the capabilities of the class. Each instance of % plan element capability, when completely,
planned, will have -ll of i*s own individual slots filled.

1n our implementatlon., "capabilities" and "plan element dasses" are implemented by Ze-
taLisp flavors augmented by additional descriptive infbrmation, and "plan element instances"
axe implemented by flavor instances. The mxidag of "capabilIPes" is thereby implemented by
the flavor mixing facilities in Zet-Lisp. Thus the CAMPS AKO hierarchy is derive firom the
underlying flavor hierarchy, wAich is itself supported by the ZetaLisp dynamic type checking
facility supported by special hardware In some LISP Machines.9

4.2.2 Viewing P.inning as Constrained Slot-Filling

SInce all parameterization and intr-relationaships nong the plan-elements (i.e., a plan)
are represeuted by the contants of each instance's slots, planning can be viewed as fing
slots subject to constraints. A uslpt" is further -nnotated with the location where the actual
information fox the slot is stored in working memory (e.g., locally with the instance, indirectly
in ancthe- slot, or with the class).

"This and othev implementation detail msy "wcnga u work moves forward on a ao"e po.table vevw of
cAm.s to be impnemteaW in Common-Isp.

21



There are three types of slots in CAMPS; remote, local (single-valued and set-valued), and
indirect. The importance of indirect slots must be recognized. A plan element instance is a
local planning context comprising that instance's slots, each of which is a decision variable.
That slots can be 'indirect" means that these local planning contexts overlap, and that the
overlap is determined dynamically by what plan element instances fill slots.

The CAMPS architecture allows the user •o freely change the value of any slot at any
time (provided they have "modify access rights"). Of course, doing so may wreck a plan;
users are allowed to express arbitrarily bad and inconsistent plans. Furthermore, constraints
(described below) can always be checked in a mode (normal-mode) in which no side-effects
on slots will occur. Thus the values of slots are under the user's control.

At the implementation level, information other than that in slots can he associated with
r- plan element instance by the CAMPS architecture implementars. For example, a resource
availability time-line is associated with each resource pool. While this time-line structure
is not, strictly speaking, a slot structure, it is maintained in some ways like a regular slot,
including being referred to (by certain functions within CAMPS) as if it were one. The
presence of these so-caled non-slot instance variables is inherited in the same way slots
are, but instance variables are considered under the architecture's control, and are neither
directly manipulated by the user nor described by the application's knowledge engineer.
Since these instance variables are not slots, the user is unable to change them arbitrarily.
Furthermore, unlike slots, the values in these non-slot instance variables may change as a
result of normal-mode constraint checking. For example, checking that a planned resource
uti Ulation is "feasible" may result in updating the resource availability timc-line, either to
add the utilization when It is feasible, or to remove It if it has been changed to become
infeasible.

4.3 Constraints, Rules and Predicates

The CAMPS architecture takes a knowledge-based approach which views scheduling and re-
source allocvation primarily as a conktraint satisfaction problem. The facts of some application
are expressed (in part) by explicit constraint declarations. The constraint, themselves test
local conditions.

In CAMPS, a constraint is a conditional statement of the form "ih'A and B and ... are
all true, then the plan element is in trouble if condition D is true." A constraint can be
"checked" when all the arguments to A, B, ... , D are known. A checkable constraint is
violated if A, B, ... are all believed and D is not atrongly disbelieved 7j'.

Ideally, a plen should not have any violated constraints. However, it Is naive to believe
that planning problems have solutions in which all cunstraints are satisfied. The CAMPS
architecture uses ! n.',eric measure that reflects the d$iee of belief in a constraint being
violated.

In addition to degree of belief, CAMPS also associates a consequence category with every
constraint. The consequence category provides a quaitative measure of the seriousness of the

22



constraint's violation. The consequence category helps to order the constraints for evaluation
and provides a metric by which problem-solving strategies can selectively check and relax
constraints.

Figure 4 displays the declarative definition of a constraint, and illustrates some of the
important features of a constraint specified by the developer.

(defconstraint ORIGIN-DIFFERENT-FROM-DESTINATION move
(origin desti. ation)
:prohibit (*equals* ?origin ?destination)
:consequence-category :feasible
:endorsement 0.3
:belief 1.0
-documentation "Origin of a move must be different from

its destination.'')

Figure 4: An example of a declarative constraint definition.

The qualitative categories of this clasification (7] are:

* Feasibility: laws of physics or human nature are being violated.

* Survivability: normally reusable resources will be consumed.

* Success: Implicit 6oal of a task will not be accomplished.

* Efficiency: resources or opportunities are being wasted.

* Assumption: a reasonable expectation is unfullilled.

Constraints can be easily defiued. Each constraint declaration creates a data structure
with the following attributes:

s Plan Element. The plan element that is the focus of the constraint.

* Involved Slots. The slots for which the relationship is enforced.

* Conditions. This is a list of predicates, some of which may be negated. The constraint
is applicable only if the conditions are satisfied.

e Relationship (Predicate). A constraint defines a relationship between slots of a
plan element. This relationship is expressed as a single, possibly negated predicate
that defines the constraint [26].

23



CAMPS supports three types of predicates: hand-coded predicates, relation-based predi-
cates, and rule-based predicates (see [5] [6]). CAMPS predicates are different from LISP (or
other programming language) predicates in several respects. The standard interpretation-
called normal-mode-of a predicate is simply to find out if the relationship holds or not. All
predicates return three values: (1) *TRUE, *FALSE, or NIL indicating "don't know;" (2) belief;
(3) disbelief. [7]

CAMPS predicates can also be evaluated in certain non-standard evaluation contexts.
One, called the make-context, produces a list of potential changes in plans that might result
in the predicate becomming true ("make-true") or false ("make-false"). Another, called the
bias-context, tries to unify and restrict the arguments to the predicate so that the candidates
are likely to satisfy the predicate ("bias-true") or are likely to make the predicate false
("bias-false").

There are three ways to define a predicate in the CAMPS architecture. The first is to
write some LISP code. A small number of predicates-typically encoding the meaning of
predicates like "PLUS" in an expression (PLUS ?A ?B 10) to claim that A + B = 10-have
been built this way, but this is clearly not a "declarative representation of knowledge."

A second way to define a predicate is to use the relational database's relations. As an ex.
ample, the predicate has-runway-length in an expression (has-runway-length ?airbase
?runway ?required-length) could be defined on the database relation airbase-facility
using the airbase, runway.designation, and runway-length attributes. This technique for
defining predicates simply tells the CAMPS inference mechanisms where to go to look for the
answer. The form of the computation is fixed; a declaration provides a mapping of the name
of the predicate to the relational database.

The third way to define a predicate is to use a rule. Our formalism uses a single formula
to express two closely related logical expressions (see [5] for more details on predicates).

4.4 Variables: Their Structure and Function

In CAMPS, planning is accomplished by filling slots in plan-elements. This is normally ac-
companied by the firing of constraints which evaluate the acceptability of the slot filler. At
a higher level, there are strategies that guide the system in selecting which slots to fill first,
how to fill them, and what to do if problems are encountered. This report provides a detailed
description of the lower level functions that control how CAMPS produces candidates for a
slot and how it attempts to select an acceptable slot filler from the available candidates.

4.4.1 Preliminaries

Each slot in CAMPS is represented by a variable. Ultimately, the most important information

associated with a variable is Its current fixed value and the constraints that evaluate the
acceptability of this value. A prerequisite for slot filling is the ability to find candidates for a

24



I

slot that agree with the specified content for that slot (i.e., they must pass a "type check").
A prerequisite for efficient planning is the ability to select a candidate that will then pass all
applicable constraints when tested in the current context. If a serious constraint violation
is detected, then it is necessary to change a previously selected value, to decide that the
violated constraint does not really apply because of special considerations, or to continue
with a flawed plan. However, CAMPS has low level mechanisms that tend to lead to the
selection of good values to fill slots. This is accomplished by the use of CAMPS-generatora
that axe associated with slot variables.

4.4.2 CAMPS Generators

The purpose of a generator is to produce, upon request, an acceptable candidate to fill a slot.
Again, the obvious first requirement is that a generator must kuow about potential candidates
for its slot. CAMPS has different types of generators to support different methods of obtaining
candidates. All slot generators are created by initialize-variabla-generator which uses
mainly the content information found on the slot's variable to decide on the type of generator
and the source of its possible candidates. The generators discussed below are all built on
camps-generator and are all used to generate candidates to fill slots in a plan-element.
They should'not be confused with other types of generators that are used within CAMPS for
different purposes.

The simplest slot variable generator is a 10-generator which, as the name implies, ob-
tains its candidates from a list of internal CAMPS values. As an example, consider an
aircraft-capability slot which is intended to designate the type of aircraft ,ised in an
OCA mission. The slot variable provides the information that the slot content should be
an OCA-ac capability. It is easy to find a list of all aircraft types that include the OCA-ac
capability. This list will make up the initial pomibilities of the list-generator.

Another generator is the range-generator which produces candidates that are numbers
found in a CAMPS range (made up of intervals which designate start and end values). Rep.
resenting the possibilities as a range is obviously more practical than trying to provide a
(possibly infinitely) long list of numbers. Variables for slots that have content :number or
:time are initialized with range-generators. Currently, :time produces a generator of inte-
gers while -number produces a generator of all reals. While there is some need for content
types of :integer. :positive- integOr, etc., we have chosen to limit the number of types
and to use other means to support variations on :number.

The relation-generator is yet another type of generator. It obtains its candidates from
the relational database associated with a CAMPS domain-specific application (such as AmPS).

Consider a slot that has a content of friandly-airbas., meaning that it is to be filled with
an instance of an .sse.tial-plan-element possessing the friendly-airbase capability.
The capability provides pointers to where in the database its possiblities can be found. Air-
bases might be found in some attribute position of a specified relation. Additional selection
information might further specify that we are interested only in those that have "friendly"
in some other attribute position. Using this information, all of the friendly airbases can

25



be obtained from the database, and these make up the initial possibilities of the relation-
generator. An important difference, however, is that these possibilities are external date6ase
values, not internal CAMPS values. When it is asked for a candidate, the relation-generator
must select one and then "instantiate" it into an internal value which it returns. Ad&antages
of this type of generator include the natural use of an existing databa.--e while limiting the
instantiation of database values to those that are actually selected.

There are also various camps-creation-generators that produce candidates for some slots.
This class of generator tends to create a new candidate rather than selecting one from some
known group of existing candidates. As an example, consider a slot that holds a reservation
for a resource usage. If there is an existing reservation for this slot, it should already be
filling the slot. If there is none, then each existing reservation (in working memory or in the
database) should belong to some other slot representing a different reservation. Therefore, a
normal action for a generator on such a slot is to create a new instance of a (mostly unplanned)
reservation. This type of generator is less relevant to the current discussion which is largely
concerned with techniques of selecting a good candidate from a large number of available
possibilities.

4.4.3 Selecting Candidates based on Restrictions

Given that a slot has a generator that can produce candidates to fill it, how does the generator
decide which of the possibilities should be selected as the next candidate? The default would
be simply to select the first pcssibility that is encountered. This value would become the
fixed value of the slot, and then applicable constraints would be fired to test Its acceptability.
If the value is rejected by constraints, then another value would be tried. In an ideal situation
where all possibilities are likely to succeed, this would probably be the most efficient way
of selecting candidates, avoiding the overhead of other methods. Of course, It actually has
many limitations.

Suppose a range-generator has for its possibilities all integers increasing from 1, and
suppose that there is a constraint specifying a violation if the value is less than 1000. Clearly,
we want a more efficient alternative to selecting a value, firing constraints, rejecting the
value, and then repeating the process until success. The case can be even worse for a
relation-generator. While finite, the number of possibilities can still be enormous. And, each
possibility is an external value that typically requires a relatively expensive instantiation
into an internal value that can be used as a slot filler. List-generators probably would cause
the least problem, since they typicaly have a limited number of possibilities, a of which
are internal values. Still, it would be nice to avoid firing constraints on several possibilities,
particularly when an expensive constraint is present.

Actually, one step was left out In the algorithm described above. Normally, filling a slot
is preceded by firing constraints on the empty slot in the BIAS-TRUE (success motivating)
mode. In any evaluation mode, firing a constraint in a situation where all involved slots are
fixed will obtain the same answer. A constraint enforcing the *PLUS* predicate on three slots
will complain if the context is 6 = 5 + 2. In the BIAS-TAMJ mode, the same constraint fired

26



on 6 = 5 + slot-X would send a restriction message to the generator on slot-X telling it
that a particular constraint wants its candidate to be 1. With that condition, the constraint
could then report that it is satisfied. When slot-XI's generator is asked for a candidate, the
existence of the constraint-imposed restriction would lead it to return 1 as its candidate. If
it is then used to fill slot-X, constraint firing could then be expected to succeed.

Naturally, this is an over-simplification. Some other constraint might simultaneously be
imposing a restriction on slot-X telling it that the value should be greater than 5. Yet
another might want even integers. Generators must have a means of representing all possible
restrictions and combining their effects appropriately to determine what candidate should be
selected.

One problem is how to determine whether a candidate is acceptable. CAMPS uses the
idea of a belief threshold. If the absolute difference between a belief and a disbelief is at least
this threshold, then these beliefs earn an overall *true or *false rating; otherwise they are
considered to be uncertain. The current default threshold in CAMPS is 0.6, meaning that (0.6
0.0) and (0.2 0.8) are examples of minimally *true and *false beliefs, respectively. If
a candidate scores *true, then a generator will stop its search and return that possibility.
Otherwise, it seems worth the effort to continue searching for a better candidate. Unfortu-
nately, the belief threshold approach does not work very well at the generator level. Overall
beliefs in candidates have typically been greatly reduced by evidence combination, particu-
larly by a constraint's consequence-category and by the typically low endorsement weight.
Therefore, a filter-tree maintains a best possible score, calculated by obtaining from each leaf
filter node the maximum belief that it can return for any candidate, and then combining it
with the fixed weights in the tree. Any candidate that matches this score should, therefore,
be automatically accepted, since nothing better will ever be found.

It is still the case, unfortunately, that a generator frequently fails to find any candidate
that meets acceptability criteria. Each candidate that is considered and found to be sub-
standard is temporarily "suspended" by moving it to a list of suspensions. If the generator
runs out of candidates, it will then obtain the highest scoring candidate from among the sus-
pended values. Two candidate beliefs are compared in a manner that gives greater (negative)
emphasis to disbeliefs. A (0.3 0.0) belief in a candidate, for example, is probably better
than a (0.6 0.2) belief. If a substandard score is mainly the result of weak weights, then
the candidate returned by the generator will probably pass constraints. If the best candidate
is actually a bad choice, then constraints will fail. The generator has still produced the best
candidate according to the posted restrictions. Although it seems like a lot of work, finding
the best of the suspensions has the advantage that it is one of the ways of producing a "best"
value. In practice, we have found that relative belief differences within a generator are more
important than any absolute beliefs.

When a candidate provided by a generator fails constraints, this means that either there
is no acceptable candidate in the current context, or there is a key constraint which acts on
the filled slot, but previously failed to post a restriction. This could be because it was not
previously fired or because the restriction was too expensive or impractical to calculate in
the context that included the empty slot.

27



Earlier, we examined how slot filling might work without a filter-tree. An unrated candi-
date would be selected as a slot filler, constraints would fire, and the process would continue
until a good candidate was found. At this point, the main change is that the process has
been moved to a lower level with the substitution of filter-tree evaluations for constraint fir-
ing. This is in fact a very significant improvement because instead of testing each candidate
against all of the applicable constraints at once (and invoking all of the associated support
functions for doing this), the candidates are tested against individual constraints and filtered
separately. Repetitive application of constraint testing functions are minimized. However,
it leaves us with an analogous trial and error search for a good candidate. For the typical
list-generator, this technique is acceptable. For the other two generator types, there will still
be occasions when good candidates will be found only after huge numbers of trials. This is
undesirable even allowing for the large speed increase for each candidate test. A solution to
this problem is the use of Lprefilteringe in addition to filtering.

4.4.4 Preflitering Generator Candidates

Consider an example where a range-generator has initial integer candidates ( (0 +infinity)).
Suppose two conjunctive restrictions have been posted, the first favoring values >700 and the
other wanting values <2500. Using standard filtering, we might find a good candidate only
after 700 tries. However, it is easy to see, and also easy to represent, the fact that values in
the range ((701 2499)) are somehow favored over those in ((0 700) (2500 +intinity)).
We could suspend the substandard values as a group and leave the favored values on the
possibilities. Having done this, the generator would then consider 700 as its first candidate.
This is the basic motivation for preffitering.

Slot restriction messages are sent out during hand-coded and dbprtdicate evaluations with-
out any consideration of the type of generator on the slot to be restricted. It is up to the
generator to decide how to implement the restriction, or even whether or not it can imple-
ment it. The same restrictions sent to different types of generators will normally result in
diffe'ent filters in the leaf nodes (FIFTN) of the filter-tree (see Appendix A for more de-
tails). All of these filters must possess certain capabilities. Each must be capable of taking
an internal CAMPS value and returning beliefs in its acceptability. Additionally, each must
be able to return, upon request, several other items: the maximum belief that It will give to
any theoretical candidate; a string documenting its fitering actions; the restriction message
and arguments that led to Its restrictions; and whether or not some other filter enforces the
same restriction that it does. In addition, some filters have the capability of prefiltering can-
didates. This capability appears In their ability to return a representation of their candidates
weighted by belief in acceptability.

Prefiltering is ideal for range-generators because of their ability to represent large numbers
of candidates in a compact manner. Prefiltering is still relatively expensive, however. Each
leaf filter that supports prefiltering, returns a weighted-range. This assoeatez beliefs with
various subranges of the candidate range. Usually, this is a fixed belief for a grl en subrange.
The other option currently supported is to have two beliefs associated with a subrange
consisting of a single interval. The two belief pairs are for the values at the start and end

28



of the interval, while other candidate beliefs vary linearly between the end values. Once a
weighted-range is obtained, it has to work its way up the filter-tree, experiencing the same
types of evidence combination that a single candidate would encounter. The final result
is a weighted-range showing all possible candidates ranked by the combined belief of all
restrictions. Subranges with substandard beliefs can be immediately suspended. Supplying
a candidate now consists of getting the first (and best) value from the possibilities range or
else the best of the suspensions. The generator still tests this individual value against the
filter-tree, but it should be found to be either acceptable or at least the best substandard
value.

List-generators can also support prefiltering. Since there is usually less to gain, the
generator may not engage in prefitering for all restrictions. A filter that supports prefiltering
returns a weighted- list of candidates. These are simply lists of internal values with an
associated belief for each value in the list. There may also be a NIL list with a belief for all
values not found in the union of the other lists. At the simplest (and least desirable) level,
a list-generator filter could create a weighted-list for prefiltering by individually testing each
of the possibilities. A restriction imposed by an *EQUALS* predicate provides an example
where prefiltering is more compatible. It would produce a weighted-list providing one belief
for a specified candidate and another belief for "all other" candidates. This could be done
without even looking at the possibilities, except to check that the specified candidate is in
fact a known possibility.

Prefiltering also greatly improves performance of relation-generators. Our original ap-
proach was to perform normal database operations on relations involved in different restric-
tions of the same slot. The acceptable possibilities would then be selected from the result.
This approach had two problems. First, some situations led to some very expensive rela-
tional join operations. Also, all restrictions based on the database could be made only to
relation-generators, which were not compatible with other generators. All restrictions were
considered to have absolute belief (if present in a relation) and absolute disbelief (if absent).

Now, a relation-generator starts out with possibilities from a relation. A database re-
striction is posted as a filter that tests a candidate during filtering for Its presence in a
certain relation (first converting the candidate to an internal value). It returns different
beliefs based on the presence or absence of the candidate. Prefiltering is supported using
weighted-lists as in list-generators, but with external values. Thus, the current treatment of
database constraints is identical to what is the case when the constraints are not based on
dbprdicates.

Any generator can have a database restriction which will be combined in the normal
manner with other restrictions. Similarly, non-database restrictions can also be posted in
a relation-generator's filter-tree, evaluating an internal candidate in the normal manner.
Although infrequent, a range-generator could, for example, have a restriction that a candidate
should receive one belief if found in some location of a specified relation and another belief
if not found. This restriction could even be converted Into a prefilter weighted-range if this
operation were deemed to be relatively inexpensive. Similarly, a RELATION-GENERATOR
could have a restriction that is not based on the relational database. Consider a restriction
that the filler of a slot must be a capability possessed by some plan-element. During filtering,

29



the filter will test whether that plan-element has the candidate as a capability. Since a plan-
element has only a small number of capabilities, it is also easy to support prefiltering. This
involves an inexpensive conversion of these possibilities into external values, all of which
receive one belief pair while all other values are assigned the "not present" belief.

4.4.5 Applicability and Efficiency Considerations

When a candidate is tested and then relegated to the suspensions, it is also marked with
the filter-tree's current timestamp. This timestamp indicates the time of the last change
experienced by the filter-tree. Whenever a change occurs (adding a new filter, or removing
or modifying an existing filter) the filter-tree receives a later timestamp. Any suspended
value, with a timestamp that predates the filter-tree's, might now receive an acceptable or
better rating. A change does not necessarily cause an immediate review of the suspended
values. In this case, the generator continues to test candidates still on the possibilities. But
if it runs out of them, it will check for outdated suspensions. If no acceptable candidate is
found, it then installs the best suspended value as its candidate.

Suppose a constraint evaluation posts a restriction on a slot. Then a short time later, the
constraint is Ared again without any changes having been made that would affect the original
restriction. We do not want to do a lot of unnecessary work and end up with two separate
but identical restrictions posted in the filter-tree. One way to avoid this, of course, would be
to not fire a constraint when no change has occurred that would affect the result and side
effects of the constraint's previous firing. In practice, it can be difficult to recognize that this
situation exists. But refiring the constraint is actually fairly efficient, anyhow. A restriction
is installed at the end of a path that exactly reflects the source of the restriction. When a
restriction is received, the installation code follows the existing filter-tree paths, diverging
only if the new path does not yet exist. If nothing has changed, then this process will reach
an existing filter node and will also recognize that the existing filter already is imposing the
desired restriction. The filter-tree would not be changed and the new filter would simply be
discarded. (The new filter is initially created In skeletal form. Most of the work in filters,
such as creating a weighted-range, is delayed until triggered by an actual request.)

An existing filter may also be modified. Suppose olot-X is restricted to be greater than
the fixed value of slot-Y which subsequently receivs a new value. In this case, installation
of the new filter again reaches an existing filter node. This time, however, the existing filter
is found to be different and is replaced by the new restriction. Although the structure of the
tree has not actually changed, Its evwluation standards have changed and the filter-tree is
marked with a new timestamp.

There is a problem, however, when a restriction posted by one firing of a constraint is
entirely absent in a subsequent firing. Perhaps it was imposed by the antecedent of a rule
which, due to changes, is now considered to be Inapplicable. Or, perhaps the constraint no
longer passes the constraint conditions. In this case, a restrictioni already posted in the filter-
tree will be inapplicable. Recognizing that it needs to be removed seems difficult because
this restriction will not be encountered during the new evaluation. It turns out that this is

30



all that we need to know. During a constraint evaluation, the filter nodes (FIFTN) of all
encountered restrictions are collected and then stored on the constraint instance. On the
next fiing, a new list is collected. Any node present in the older list but not present in
the new list represents a restriction that no longer applies. Remember that a repeated or
modified restriction always ends up in the original FIFTN, so comparing the new and old
lists works correctly. Having the FIFTN also makes it simple to unwind the restriction. A
restriction node is removed from its parent's subnodes slot (we currently shift such nodes to
an oldnodes slot, on the assumption that they are likely to be used again during a subsequent
evaluation). If the parent node finds it no longer has any subnode, then it similarly removes
itself from its parent, etc.

Another case requiring restriction unwinding occurs when a constraint evaluation posts
a restriction and then later during the same evaluation discovers that the restriction is not
applicable. This is most apparent during rule evaluation. Each rule antecedent is to some
extent a condition for all other antecedents. Suppose several antecedents are evaluated.
If exactly one restriction is posted and all antecedents are true, then that restriction is
applicable. However, suppose after making a restriction, a later antecedent is false. Or,
suppose a later antecedent requires a restriction on another slot in order to be true. In either
case, the rule is considered to be inapplicable, and the restriction needs to be unwound.
Fortunately, the rule evaluation is already collecting its filter nodes, as discussed above. So
it knows what restrictions have been imposed by Its antecedent paths and is able to unwind
them easily. We have also looked at the possibility of a restriction in a disjunctive path being
rendered inapplicable by the result of another path. For example, the first path might need
a restriction to satisfy a predicate, but then the second path might support the predicate
without restriction. The restriction may seem unnecessary, but we currently leave it in force.

If the restricted path is capable of complaining, then failure to satisfy the restriction could
cause a constraint violation despite the success of the other path. If the restricted path only
has endorsement capability, then the restriction is probably unnecessary. On the other hamd,
if everything else is equal, why not select a candidate that this restriction likes? If there are
good reasons for selecting some other candidate, then this retriction will not oppose such a
choice.

The use of prefdlterlng can be controlled by the user. The normal (and also most extreme)
practice is to prefilter each time that a filter-tree is changed. Empirically, this seems to
provide the best results. Prefiltering can also be turned off. Filters that support prefilterlng
also support normal filtering anyhow, so the system should run. At times, running without

pre-filtering can lead to serious efficiency problems. CAM PS generators are capable of catching
some of these problems by detecting situations where a request for a possibility leads to an
excessive number of failures. In one configuration, a generator can be told not to prefilter
automatically, but to invoke prefiltering only after filtering has rejected a certain number
of possibilities during a request for a candidate, In other words, it avoids the expense of
prefiltering if good candidates are easy to find. Finally, a generator can interrupt searches for
a good candidate after an excessive numiber of values are considered unsuccessfully. Currently,
this allows only the user to intervene, but we could perhaps alternatively call on higher level

CAMPS procedures to provide guidance.

31



4.5 Problem Solving Strategies and Metaplans

In CAMPS, strategies can be provided that provide top-down intelligence to guide planning.
Constraints provide sufficient bottom-up knowledge to support the automatic filling of a
single slot with the best candidate. The metaplanning mechanism supports the automatic
planning of the more complex domain tasks, consisting of large sets of slots associated with
different tasks and sub-tasks. Metaplans express control knowledge as an ordered sequence of
planning steps. Some metaplans have specific knowledge of how best to plan a particular task,
including what slots to fill in what order. Variations on these metaplans might be particularly
applicable for replanning and others might be specialized for replanning in time critical
situations. Other metaplans are designed to fix problems (e.g., a constraint violation) using
knowledge ranging from general planning considerations to very domain specific techniques
for fixing specific problems.

The strategic component of CAMPS is driven by the posting of goals. Since it is possible
that many metaplans might advertise their ability to achieve a particular goal, other meta-
plans are designed to select the most promising ones to execute first. This decision can be
based on which is the most specialized., whether the planning context satisfies applicability
filters of some strategies, whether certain global goals have been posted (e.g., conserve certain
resources, maximize adfety), etc. Metaplans have potential for evaluating the usefulness of a
plan and also to explain what planning decisions were made and why.

4.5.1 Metaplans

Metaplans are mostly declarative descriptions of problem-solving strategies containing three
kinds of information:

a Goal Pattern giving the goal symbol the metaplan matches, the required goal argu-
ments, the optional goal arguments, and absolute applicability tests based on the ar-
guments. The applicability tests themselve6 may bQ stated in Wtms of the names of
LISP functions that are free of side-effects.

* Applicability measures quantify in absolute terms how well the given metaplan is likely
to work in achieving the spedfic metagoal along a number of different dimensions (e.g.,
specificity of the metaplan, speed of solution, expected solution quality).

* Template for creating an active problem-solving agent to execute the metaplan. The
template names the standard control flow of the active Went and a list of alternating
keyword and argumtents, where the keywords are more or less specific to the given
standard control flow. Some of the parameters may be names of procedures or lists of
names of procedures.

The inclusion of functional parameters within the description of a metaplan imp~ies that
metý :ans are not purely decla-ativre. We however claim that the metaplan formalism is

32



mostly declarative because the procedural portions (the functions named in the metaplan
description) are severely constrained to be free of side-effects, which prevents encoding arbi-
trary actions into them.

4.5.2 Metagoals

We separate the goals of a plan (which might be to interfere with an enemy's ability to wage
war) from the goals of a planner (metagoals). These metagoals concern the planning process
itself, for example:

1. Parameterize the wvy in which tasks in a project will be performed.

2. Find a "rough cut" schedule to identify critical resources.

3. Assign resources to tasks taking suitability and availability into account.

4. Schedule tasks.

Syntactically, a metagoal is simply a goal symbol with some number of parameters.
Metagoals are formed automatically by CAMPS. Given a metagoal, CAMPS finds all the
metaplans that are applicable by pattern matching. If there are several matches, then the best
is selected according to heuristic comparisons based on the applicability measures. Finally,
the 'best" metaplan's template is used to create an active problem-solving agent, with the
less applicable metaplans held in reserve in case the 'winner" fails IT]. In keeping with ^he
CAMPS philosophy that as much knowledge as possible should be encoded declaratively, the
basic agendas from which domain-specific metaplans are constructed are contained in an
agenda hierarchy.

4.5.3 Viewixg Plans as Trees of Tasks with Associated Resources

The CAm Ps architecture uses a suite of AM techniques to represent knowledge about a par-
ticular planning application. These techniques include notions about specialization and gen-
eralization, coustraiat-based heuristic swarch, and evidential reasouing. (See [(7 for more
details).

A plan-the solution to a planning probleui-will consist of some number of top-level
tasks, some of which may be intercontected by precedence relationships. Each of those
tasks may have one or more subtasks which may themnIves be interconnected by precedence
relationships and have subtasks. That is, the tasks of a plan ase arranged into task/subtask
tree structures, with the top-level tasks acting as the roots. Furthermore, each task has a
number of slots that furthei parameterize the task and the resources it needs. Fbr example,
the planned start and finish times for a task each fill a slot. A complete plan :s then the full
collection of taks and subtasks with all their "lots appropriately filled.

33



CAMPS uses a hierarchical approach to planning that can take a plan complete at one
level of detail, and further refine and modify that partial solution so that it is complete at a
greater le-jel of detail. Detail in z plan refers both to the number of slots filled in its tasks
(i.e., a less detailed plan has fewer slots filled in its tasks than does a more detailed plan),
and to the 4epth of the task/subtask trees.

The CAMPS architecture views a plan as•a set of projects. o A project is a collection
of tasks arranged into a tash/subtask tree. CAMPS identifies a project with a tree of tasks,
the root task of which is used to reprssent the entire project. The view CAMPS thus takes is
somewhat unusual:

1. A plan may consist of several disjoint task/subtask trees. Alternatively, all the tasks
of a plan may be in a single tree.

2. A project need not be a top-level task; a task viewed as a project may itself be a
subtask of a higher-level task.[7]

The generality of being able to view any task in tie task/subtask tree as a project in its
own right is necessary: in top-down planning, leaves of the task/subtask tree become lower-
level projects: in bottom-up planning projects are assembled as tasks within higher-level
projects.

The project-planning strategy is described by a metaplan as a sequence of achieviug some
number of milestones for all the tasks in a project.

Milestones are usually testable situations that should arise after certain sets of tasks
have been p-fJormed. Metaplanning milestones are situations that arise dusing the plan
formulation process.

In CAMPS the specific milestones (see [7] for further information), axranged in their ex-
pected order of achievement, are:

e Task Template Expansion. Necessary subta~lks aud prerequisites of task are described

in CAMPS by tvmplates and stored as part of the plan element declarations. Much of
the task/subtask tree and task precedence relationships c=n be automatic-Aly derived
by an inference mechanism called template expansion.

* Resource Template Expanjion. Some templates describe incidental and abstract re-
source needs. By expanding these templates, most of the resource needs of tamis can
be izlentified.

- 0Project planning is a special intance of the general planning problem in that a cmplete list. of task%
and subtasks can be enumerated from the problem bpecifir.tion. In long-tam planning, the initial problem
specification is usually inconplete, thus the tasks mad subtaik, can only be partially enumerated. Pruject
ph'nzong emphasizes resource aI/cation and saeduling, rather than discovering the sequence of steps that
accomplishes some goal. Miutary misiou plaanng, as well an arge-scle construction, pJi•ical campaigns,
antd complex surgery all fit within the project planing framewok cipected by the cAmPs architecture.[5, 7]

34



"* Preliminaryj Task Parameterization. Some of a task's parameters are needed in order
to select appropriate types and quantities of resources. This milestone is passed when
the sloLs for those parameters have been filled.

* Find Temporal Bounds. Given the precedence relations and task/subtask tree structure,
upper and lower bounds can be found for the start and finish times for each task in the
tree.

" Estimate Resource Allocations. Assignment of resources to tasks proceeds in two steps:
the first step uses approximate times for the beginning and completion of the usage to
reserve a resource. Overbooking of resources may be allowed. The purpose of this step
is to discover which resources are in short supply and when those shortages occur.

" Schedule Task. A task is scheduled when specific times are derived for the task's start
and finish.

" Reserve Resources. Given a resource reservation, an allocation of the resource can be
made to a task for a specific time period. To the best of the system's knowledge,
allocations are not overbooked.

" Final Task Parameterization. When resources have been assigned and a task has been
scheduled, there may be some final parameterization required.

The rationale behind breaking the project planning process into a sequence of milestones
is to allow for the substitution of global strategies for local ones at milestone boundaries.
Such a global strategy will usually use its own technique for enumerating tasks and slots
within those tasks to be filled.

A good example of a global strategy is one that, for tasks using several scarce resources,
finds both a schedule and a set of assignments (see [32] for a comparison of "state of the art"
exact algorithms for solving this kind of problem). Consider Stinson's [37] as a specific exam-
ple; such a strategy would (partially) replace local strategies for three milestones: estimate
resource allocations, schedule task, and reserve resources. Since we have no way of knowing
which of thme milestones will occur first in a project-planning strategy, we need to make
sure that all three milestones are recognized as metagoal symbols algaling that Stlnson's
algorithm should be used.

Many global strategies for reource allocation first find an acceptable solution (e.g., sched-
ule with assi'gments) and then try to improve the solution. Local strategies also use guess
and back up while filling slots (see [7] for details).

4.5.4 Plan Repair using Delta-tupies

Constraints are used in the CAips knowledge-based planning system to represent those
propositions that must be true for a plan to be acceptable. One mode of interpreting a
constralit determines its logical value. A second mode inverts a constraint to restrict the

35



values of some set of planning variables. CAMPS introduces a third mode: the "make" mode.
Given an unsatisfied constraint, make evaluation mode suggests planning actions which, if
taken, would result in a tnodified plan in which the constraint in question may be satisfied.

These suggested planning actions-terlaed delta .tupkesý-are one source of raw material
for intelligent plan repair. They were intended to be used both in "debugging" an almost
right plan and in replanning due to changing situations. Given a defective plan in which
some set of constraints are violated, a problem-solving strategy would select one or more
constraints as a focus of attention. These selected constraints are evaluated in the make
mode to produce delta-tuples. The problem-solving strategy would then review the delta-
tuples according to its application and problem-specific criteria to find the most acceptable
change in terms of success likelihood and plan disruption. Finally, the problem-solving
strategy makes the suggested alteration to the plan and then rechecks constraints to find
any unexpected consequences. While delta tuples were implemented in CAMPS, experience
with the system revealed that they were less useful than was originally thought, and they
are not actively used in the current system. For this reason we do not provide a detailed
examination of delta-tuples in this report. Fot a full description of delta-tuple usage see [261
and [7].

4.6 Scheduling

Operations research shows how, in various special cases, to simultaneously achieve several
milestones over a task tree in a global manner. Generally speaking, no real planning problem
precisely fits the spcial case required by an OR algorithm, so one is generally content to
ignore some considerations, find a partial solution, and then fill in the rest in an ad hoc
manner, making changes in the OR solution as required.

The du- ation of some kinds of tasks (e.g., building a house) is a function of how much
of several types of resource (e.g., carpenters and masons) is applied to the task. Both
resources and overall tardiness have associated costs, so we would naturally like to find the
overall minimum cost way to allocate resources. The well-known critical path method in
management science uses linear programming to find such a global minimum.

During 1988 we undertook an experiment to build a new scheduler for AMPS which uses
an appllcation of branch-and-bound search for an optimal schedule, using Stinson's selection
and pruning heuristics (see [71 for details). The goal of the experiment was to develop
a scheduler that would use a global scheduling strategy for "enumeration" of an optimal
schedule, taking this ideal schedule as the starting point in producing a feasible schedule
which satisfies resource constraints. With this approach, a global planning view finds the
best starting point, local adjustments complete the work.

Essentially, this experimental scheduler is a metaplan that follows two basic steps: de-
vising an optimal schedule, and committing to some approximation of that schedule. In
devising a schedule, it applies branch-and-bound search, implemented as an agenda, while
ignoring resource constraints almost entirely. The schedule produced is 'ideal" in that it is

S~30



the best possible and almost certainly unattainable; all tasks are scheduled for earliest start,
but careful resource tracking is postponed.

In the resource allocation phase, it attempts to assign task schedule times while tracking
resources, succeeding or generating suggestions for changes (delta tuples). An agenda pro-
vides the procedural skeleton of branch-and-bound-search. It accepts the relevant parameters-
tree initialization, node generation, heuristics for node selection and pruning, and so on--as
instance variables, and carries out its search using the supplied functions. A metaplan is
used to invoke a domain independent agenda to supply a partial schedule tree representation
and Stinson's heuristics.

Search parameters are supplied by metaplans which invoke the agenda, so that varying
search strategies (within overall branch-and-bound search), search goals and search space
representations can be produced with the same agenda invoked in different environments.
The schedule produced through branch-and-bound search is in fact used in two ways: it
provides initial values for schedule times, and it guides the scheduling task. Instead of
scheduling a task, then its subtasks, and so on, using this experimental schedule will cause
CAMPS to try to schedule the tasks which are best started first, then second, and so on.
Intuitively, this seems reasonable: if the system encounters problems, they will typically be
due to resource restrictions, and there will be only one basic option for resolving the difficulty:
postpone one of the tasks involved in the resource conflict.

4.6.1 Description of a Schedule

A schedule could be as simple as assigning a time interval to each task, 11 or as complex as
a description of inter-agent communication protocols. Generally speaking, the "richer" the
scheduling vocabulary, the more "planning" is done at "plan execution." But by postponing
planning decisions, the planning problem generally becomes harder because the plan-time
planning needs to take all eventualities into account. Points along the schedule complexity
dimension include time intervals, partial precedence graph (with unplanned coordination
among parallel tasks), single-process conditional branches, singlk-process general recursive
plans (the statement of the "plan" has the contro) structure of a general recursive procedure),
multi-agent cooperative plans, and multi-agent a~versarial plans.

4.6.2 TMsks

In the most general terms, a solution to a planning problem contains the following: 12

* A set of tasks that are to be performed.

""1See [6] for a description of how th!e PERT scheduling technique can be re-interpreted as a probknmi-olving
stnal -U. and for a dewcription of the hierarchical PERT (UPERT) developed for use in cAps.

'
2This idea is described in more detail in 153.

37



# An assignment of resources to the tasks.

e A schedule describing the sequence in which the tasks should be performed.

Goal states, constraints, and utility functions are parts of the statement of a planning
problem (although they may be elaborated on as part of solving the planning problem: the
plannex may uncover additional constraints while trying to construct the plan).

"Tasks" refer to things that happen during the execution of a plan, not to things that
must be done to prepare a plan (in CAMPS the latter are called "metagoals"). The notion of a
"task" can also be broadened to include "applying a test" and "performing some operation,"
and "making a decision." A specific task can be completely described by giving a list of its
starting and ending events (often given as times), a set of needs and the resources that are
meeting them, and a set of other associated tasks. Any instance of a specific task type can
be described using some standard form, with "blanks" on the form being filled in with:

* something indicating when the task starts and stops (i.e., when the task is scheduled)

* specific needs filled with quantities of resources

* specific kinds of support provided by other tasks

In CAMPS, tasks, resources, relationships between tasks and between tasks and resources
are described in the following structures: the plan element hierarchy, the relational database,
constraints, and the task template mechanism. The plan element hierarchy provides infor-
mation on the conceptual generalizations and the capabilities of tasks and resources, e.g., a
resource is sharable, movable, one of a kind of aircraft. The database provides Information
on specific tasks and resources. A constraint might be used to specify a certain relationship
between tasks, between resources, or between tasks and resources (a task of type X always
uses a resource of type Y). Finally, the task template mechanism provides a declarative
mechanism for specifying the predecessor/successor and parent/child relations among tasks.
With this mechanism, the user or the metaplans can plan to greater or lesser levels of detail
(in terms of task/subtask decomposition).

4.6.3 Resources

Resources are organized into pools. A resource pool represents one or more resources. When
representing more than one resource, all the resources in the pool are considered inter-
changable and indistinguishable. Pools themselves may be grouped into pool sets.

A local pool is a pool of resources set up for a specific task so that that task's subtasks,
when they require resources, can come to the local pool first, before finding some other pool
in the usual way. The idea is to approximate the average usage of some resource (e.g., people)

38



at a high-level task so that the low-level tasks will not need to be explicitly represented in
order to calculate resource needs.

Without some ability like this, a planning system is forced to "blow out" all the low-level
detail plans, introducing too much too early in the planning process. The local pool concept
is therefore what enables CAMPS to plan at multiple levels of detail. A task announces that
it would like to have one or more local pools either by setting up slots to specifically hold
the local pool, or by using the task template mechanism.

Resource Tracking

The availability of resources is typically the most critical factor in the type of planning
supported by CAMPS. While many plans might interact in a very direct manner, competition
for a limited number of resources often affects the planning of all tasks in a less direct but
very significant manner.

Assigning resources to tasks in a plan addresses problems of availability, cost, and suit-
ability. Evaluating a particular resource's suitability for a task and that task's resultant
likelihood of success involves expert knowledge and judgment. The CAMPS architecture rep-
resents and uses expert knowledge to interactively solve resource allocation problems.

From the perspective of a planning system, resources fall into three rough classes:

e Primitive Resources. are those things whose availability can be known a priori. The
numbers of primitive resources may change in predictable ways.

* Aggregate Resources. are those resources that are always composed of specific numbers
of simpler resources, but are otherwise created dynamically. For example, a "flight
ready aircraft" consists of an airplane, fuel, pilot, etc., each of which is itself a resource.

# Composite Resources. are those resources that axe composed of other resources, but
whose composition is not known a priori but must be "invented."

Planning problems involving composite resources are generally harder than similarly for-
mulated problems in which all resources are primitive. The presence of aggregate resources
in an application impacts the way in which resources utilizations are handled.

fHow CAMPS Reasons About Resources

In CAM PSresources (see [7] for a further description) are used from the start to the finish
of tasks. Indeed, a task starts when it begins using resources (like people and floor space).
CAMPS UseS a notion of partial utilization to represent both intermittent usage and usage of
an uncertain duration. With the CAMPS formalism, the only ways to say "Task A lasts for 3
days, and uses a truck on day 2" are: (1) claim the truck is partially used at 33%, or (2) claim
that task A has a one-day subtask, and that the subtask uses the truck. The task/subtask
semantics of CAMPS allows for a task reserving a resource for use by its subtasks; the two
claims about the truck are therefore not mutually exclusive.

39



CAMPS has the ability to track the availability of various types of resources to iifferent
degrees of detail. A quantized-pool supplies one type of resource to consumers. This may be
a pool of a single major end-item that is tracked individually, or it can be a pool of many like
items (quanities of fuel, boxes of paperclips) that are tracked collectively. In either case, a
pool always knows how many resources are available at any given time. The traci -g method
will depend on the demands of the domain. A single pool might be sufficient tV track the
availability of all of a company's cars. But if we start distinguishing between the cars (the
one the president gets, maintenance records, etc), then individual pools will bc required. A
pool-set for a type of resource is a pool that has some sort of control over the qliantize -pools
that actually supply the resource. A company is a pool-set for the company cars (and for
many other types of resources) that are tracked individually or collectively. A-equests to the
pool-set for a particular resource will be passed on to an appropriate quantiv.d-pool .ind-r its
control. The pool-set can also answer general questions about the resources that it indirectly
supplies (e.g., the collective availability of end-items from separate poo)s).

Some resources are aggregate resources, meaning that they consist of a collection of
various quantities of different resources. These are tracked by aggregatýý-pools which serve as
quantized-pools for the aggregate resource. But they must first obtain the components of the
aggregate from appropriate quantized-pools that supply required items. Resource-utilizations
represent a contract between a supplier (pool) and a consumer (task) for a quantity of a
particular resource for a certain time interval. Consumable resources differ only by having
an expected return that might be eternity. All pools and utilizations are instances of plan-
elements whose slots are filled during the planning process. This means that tasks and
resources-utilizations are both plan-elements and are muanipulated in s~milar ways by CAMPS.

This supports a dual view of planning, either as a sequence r-• tasks tCat consume resources,
or as a series of resource utilizations that enable certain tasks. The ability to take the latter
view is beneficial when the system is concerned with resource prob., uns.

4.7 Hypothetical Worlds

CAMPS supports the ability to hypotheically explcre differeuit p.tanning alternatives. It uses a
coarse, assumption-based approach. At any time, the values seen by tCe system are consistent
with the current world, which conssts of a col' ction of wasurziptions. These assumptions are
obtained by selection from previouly defined sets of a~sumptlons. Since the assumptions
in a set are mutually exclusive, no more than one assumption from each set is selected to
create a given world. Assumptiont are atomic in nature. It is as&;umed that the planner will
take steps to make the current ivarld "agree" with Its a;sumptions, but there is no way of
automatically recognizing or eoorcing this. Hypothesizing is a very explicit action. Normal
slot filling or modification is .:)nsidered as a desired change to the current world with no
need to retain the previous rtate. The planner must explicitly create assumptions, build
worlds, and then switch to P, world in wSJdh the next change should be valid, and out of a
world that should retain the previous st;te Hypothesizing can be used to explore alternative
plans by both the human user and the metaplanning system. An additional use might be the
creation of contingency plans. It is posible to create various alternatives for each of several
plans. Once the planning is done, the &ystem monitors external changes. As these changes

40



match some contingencies, it is possible to quickly select a new world consisting of the old
assumptions that are still valid and the contingency assumptions that have just become true.
This world would, ideally, once again consist solely of valid plans.

4.7.1 Multiple Hypothetical Worlds

Having multiple hypothetical worlds is useful in a planning system for two distinct but related
reasons:

1. When planning using a generate and test paradigm, each choice could spawn a hypo-
thetical world. The multiple worlds can then be easily compared and switched among.

2. The user of the planning system may want to explore various assumptions, options,
and alternatives.

The difference between these two uses of hypothetical worlds is in the assumptive granu-
laxity required. At one fine.grained extreme, every distinct choice for each decision variable
of the plan is treated as an independent assumption. At the other coarse-grained extreme,
the connection of world to distinct choices is lost, so that changing the value cJ one or more
decision variable does not necessarily introduce another world.

Naturally, one would like to use a very fine assumptive granularity. However, in a typical
planning application of the CAMPS architecture, there will be hundreds of plan elements,
each with a dozen or so distinct decision variables, giving us thousands of decision variables,
many of which are continuous. A fine assumptive granularity may well involve hundreds of
thousands of apparently independent assumptions.

4.7.2 Hypothetical Worlds and Comparison with ATMS

CAMPS uses a scheme similar to [16] to tag the hypothetical world in which a slot is filled
with a particular value. While we wanted to use something like the ATMS scheme developed
by deKleer, this scheme, as described in the literature, necessarily has a fine assumptive
granularity which has the potential to result in hundreds of thousands of assumptions.

The reason we consider ATMS to be necessarily fine-grained revolves around the way
assumptions representing choices are discovered to be incompatible. Suppose we have a
decision variable V, and under some set of assumptions A we compute V to have value 1,
while under the same assumptions A we also find that V has value 2. In the ATMS scheme
we then conclude that some of the assumptions in A are mutually incompatible. ATMS
records this set &! being in the no-good set, and it becomes impossible to discuss the value
of V under assumption A. The ATMS scheme centers on how this no-good set is maintained
and used.

41



A coarse assumptive granularity would allow the above situation to be interpreted differ-
ently. Under assumptions A we compute V to be 1, and later find that V should have the
value 2. Rather than indicating A contains mutually incompatible assumptions, this merely
indicates that something changed that was below the assumptive granularity. The value for
V is simply changed to 2, and the fact that 1 is also a possible value for V under assumptions
A is lost.

Under ATMS, if the user decided to change the value of V from 1 to 2, ATMS would
consider that the user had changed assumptions: that is, the user was assuming that V = 1,
but is now assuming V = 2. That is, the user has switched hypothetical worlds, so all
conclusions that were based on V = 1 are part of the previous world, but not the current.
The situation for V = 1 remains accessible.

One of the advertised advantages of the ATMS scheme is that of fast world-switching.
By recording only those assumptions which were actually used in deriving the value for a
decision variable, one can avoid recomputing them for a different hypothetical world when
the difference does not involve the dependent assumptions. When using a coarser assumptive
granularity, one may need to be somewhat more conservative: a computation may depend
not only on the assumptions justifying the computation's input, but perhaps some others
that are below the granularity.

In summary, when using a coarse assumptive granularity, one can use many fewer as-
sumptions. One can retain the ATMS fast world switching. However, one looses much of
ATMS's ability to detect inconsistent assumptions.

When using the assumption mechanism, we are working in a specific world. That is, when
we access values, we are interested only in values whose assumptions are consistent with the
world. Furthermore, when we deduce new values, we will assign them this world's tag.

Starting with the null world, each SOMEC (Set of Mutually Exclusive Choices) introduces
mutually exclusive hypothetical sub-worlds, in the sense that everything that was TRUE in
the null world remains true in the sub-world, but there may be slots filled in the subworlds
that are not filled in the null world. Similarly, given any world and a SOMEC that is not
already inr.uded in that world, mutually exclusive sub-worlds of that world can be introduced.

4.7.3 SOMECS

We think of a SOMEC as a set of positive assumptions. That is, we might assume that
one of cae A, B, or C holds. Each SOMEC is further augmented by two other implicit
assumptions: the splitting assumption corresponding to none of the positive assumptions,
and the null assumption corresponding to having not made any of the SOMEC's assumptions.
We'll allow the splitting assumption to be named and annotated, but the null assumption is
"owned" and controlled by the assumption mechanism. Thus, the minimum SOMEC includes
three possibilities: an assumption A. the negation NOT-A as the splitting assumption, and
a third coresponding to assuming neither A nor NOT-A.

42



There are several ways to represent world tags. We represent a tag M a pair of bit vzctors,
which are termed the mask and the pattern. The NULL tag is represented by all zeros in
both the mask and the pattern.

The primary description of a world is simply the user-entered textual description of the
world. Sinrce each assumption and each SOMEC also has textual descriptions, the human
user has access to multiple levels oi detailed explanation of the current and alternative worlds.
However, textual descriptions do nothing to help the CAMPS architecture recognize when a
world's assumptions have been met or violated.

In order to allow for automatic recognition of worlds, we have augmented the world
description so that the architecture can have some insight into what the assumptions and
world configurations mean. We have attached a predicate expression to each assumption, so
that the assumption is consistent with the current world if and only if the predicate expression
evaluates to TRUE in the current world. Since' SOMECs introduce branches in the world-
lattice, we can examine each SOMEC, decide which (if any) of its assumption's predicates
are TRUE in the current world, and then suggest to the user that a more specialized world
is consistent with the current state of affairs.

4.7.4 Private Worlds

The contents of the CAM PS architecture working memory is lost at the termination of a
planning session. Typically, working memory is stored away into the relational database
before a session is terminated. The contents of the database persists. Furthermore, a plauning
session is assumed to coincide with the work of a single user.

We would like the hypothetical worlds mechanism to enable a user to set up a private
set of worlds that other users cannot normally see. We provide this capability by allowing
a user to establish private SOMEC that only he sees. This SOMEC is present in working
memory only for certain users - specifically for users whose name (or user group or some
other identification associated with the user's session) matches a "privacy string." The
*SOMEC.definitions* relation contains an attribute holding a privacy-string recording such
a situation.

When the database is accessed, if the relation is tagged on a relation per world basis
and if the relation version's tag refers to a SOMEC for which the user's session did not
match the privacy-string, then that version of the relation will not be accessed. For relations
organized on a tag per tuple basis, no tuple will pass an ASSUMPTION-SELECT whose tag
includes as.umptions that refer to some SOMEC for which the user's session did not match
the privacy-string.

For the CAMPS internal representation of tags, no portion of the bit string represents a
SOMEC for which the user's session did not match the privacy-string.

43



4.8 The Relational Do.tabase

Plan elements are mapped to the relational database by two different kinds of database
declarations attached to their capabilities. These declarations specify:

1. Primary relations containing tuples that directly describe the individuals with this
capability (i.e., in this object class). Associated with each primary relation is a primary
attribute, which is the designated key in this database relation for this capability.

2. Refinement restrictions which are attributes. For an entity being listantiated, every
restricted attribute must have some value in the databasc that is in t'e set of values
given in the restriction.

3. A declaration of a set of primary reations for each capability in thC AKO hierai .-hy which
can be instantiated. These primary relations may b,- derlared oa the rapability itbeif,
be inherited from its more generalize.i pau,,s. o,, the twlý may be g•ared. SpýCifz•zy,
the set of primary relations associated with a capability is the union of primary relations
associated with its components.

4.8.1 The use of RDBMS in CAMPS

The CAMPS relational database management system (RDBMS) was made available as a
prototype early in 1987 (which is documented in [2)). CAMPS uses a relational database to
hold information about the tasks it plans, the resources those tasks use, and other incidental
information (e.g., predictions of relevant factors, status of facilities, topology, politics, costs).
The relational model currently used by CAMPS is implemented by a custom built single-access,
in-memory RDBMS.

CAMPS has been designed to use an external RDBMS to:

1. share information among different stations (not implemented)

2. receive information from, and communicate to, non-CAMPS sources

3. maintain intermediate records of the planning process

4. record the planning decisions and"justifications (not implemented)

5. maintaln alternate versions of a given plan (not implemented)

The advantages provided by a DBMS are well known. The advantages of a relational
database management system over other database organizations are primarily uniformity
ef representation and the high degree of independence between conceptual organization and
actual implementation. The following lists the advantages of using a relational DBMS enjoyed
by CAMPS:

44



1. Reliable and Robust Data Store. The DBMS provides restart and recovery in case
of hardware and software failure and guarantees structurod integrity and consistency.
A DBMS maintains its own starage and buffer management, including management
of interrelations among clusters of data. The DBMS maintains and provides alternate
access paths to the same data, maintaining relationships among the data and reduc-
ing redundancy. This ability to access the same stored data efficiently fiom different
viewpoints is a major advantage provided by a DBMS as compaxed to a traditional file
system.

2. Off the Shelf Availability. A DBMS provides a large amount of complex software
already written and debugged. Each DBMS includes one or more high-level access
languag'ms, with SQL currently being an informal standard. Because the relational
algebra admits a number of potential optirdzations, these languages usually support
internal efficiencies within the DBMS. 13

3. Data Conversion. Typicahy, a relational database haa some number of supported
data ty, s. Typkall- these include character strings, logiczJ quantities (i.e,, true and
false), aud numbers. Some databases distinguish between unknown and known absent;
CAMrs does not yet make any such distinction. .fenlewnUr a CAMPS program uses
the relational database, data either is returned in some CAMPS-usable form, or data
already in CAMpS-ujable form is converted to the database internal form. This data
conversion i6 perfoiAl diffe.rfiafy according to whether the data is pumeric or textual.
For textual data, there seems little agreement as to whether capitalization should or
should not be significant. The CAMPS implerentatieo of the reiational model associates
case sensitivity with the attribute. That is, when doing a lookup of some string "Foo",
whether that matches "FOO" under some attribute depends on whether the attribute
considers case important.

For numeric data, CAMPS uses m KS units. Thus length is in meters". nass is In kilograms,
and time is in seconds. The unit for some attribute in the database is associated with
the attribute itself. Thus some attribute orbital-altitude might zJatm to hi in "riles2'
Under most circumstances, the database has functions that convert between U KS units
and whatever the database uses. If no units are associated wikh the attribute, no
conversion is performed.

"1tnfotunately, these access languages axt diferent from each other (ern those that axe 5QL.like). How-
ever, afl relational DBMS pack:age provide the same kinds of opetatious; they differ in syutax and how tome
consructs are supported. As an example, all RDBMS packages have some way for an applic&ti•n to atep
through a relation entry by ernry, usually according to some spocified ordeting criteria The way this step-
piug is accomplished differs. For example, the Rbuae package for PCs use three pointers. A pointer can
be attached to a relation, with otdering and subset selectlon being accomplilhed at the time the pointer is
Witialized. Attribute extraction can be done relative to such a poinkt, whih is explicitly 4vanced by a
NEXT construct in the applicatlon program. Anothet PC package---dBse-loads ldatiouas into a.mas, each
with an associated pointer to a record. The aeas can be assigned symbolic cames, so that thle FOO &ea's
current record's BAR attribute value is referenced by foo->bax. An areale pointer is adv4ucet by making the
area 'curtent" and then expUdtly moving the pointe. In dbame, ordering and atutettiSg is a"o6ated with
the reht"on not the pointe as in Rhbae.

45



Instantiation from the Database Most objects processed by CAMPS are instances of
types of plan-elements. An object stored in the database is instantiated on demand into an
internal CAMPS instance by using knowledge in the plan-element hierarchy to retrieve it from
the database.

Planning is conducted by manipulating the internal CAMPS plan-element instances. All
changes and additions can be stored back (installed) to the database at the end of a session
or whenever the user wants to store partial or complete results. Installation is largely the
reverse of the instantiation process, again relying on the plan element kiowledge hierarchy.

Extensions to the "Traditional" Relational Model

The normal relational database model is not adquate for use in CAM PS. First, knowledge-
based sytems frequently use a notion of hypothetical world " in which altF=native assump-
tions and possibilities can be explored. Second, in having multiple systems sharing a re-
lational database, it is sometimes neo:ssary to have the systems react to changes in the
content of the database. Conseqi ently, the CAMPS RDBMS was extended to provide update
notification capabilities.

4.8.2 Required RDBMS Features

Each relation in a relational database co-nsists of a set of tuples (where a tuple is a row in a
relMtwon). Except for very primitive objects, no single tuple contains al the data for a given
object. Because of sharing of dwa among objects anuC beca.ne one effect of normalization
is to multiply relations, data must connmouly be drawn (joined) from different relations and
azsembled into a plan element instanca.

All of the fuctions required fir cAm Ps would bi. trz ýt by a DBMS that fully supported a
relational algeb. a, l.anguaO such as SQL from IBM (see 121 for a full description of RIDBMSreouir-e.ients),tL

For example, relational operators like Selct, PnRied and Join must be provrided, perhaps
not urder those function names. For instance, a Seokrt that can specify which attributes to
return is a hidden l-ojiec. Similarly, a Seked that can specify two relations and an attribute
from each relation on which to match is a hidden Join.

Comparison operators of both strings and numbeis muat also bW provided with which
to form selection criteri.., narudy: Greater Than, Equa, " Than. Finally, temporary

?CAmps in ali int,aded to cipy,-,vt *#.- mua:e of tie databue by Lhe hyp(ehe" Worud mechanism,

bOW~C~g1khas not Yetls- imr,"en PtU~l.-
"t"Svertal other dbma support SQL, inrlJdi•g ORACLE from Orcde Co .-oxion, Menlo Park, CA. Futhir-

more. we axe fairly confideut that INGRUS froza Relatioa! Trechnology, Inc. weeta the cAmps reqndimentu,
although we aue awaiting detaild cafirmatioa. Finaly, we heve ooknd into RDBMS for PC nized machiuc.
and find that except for shuied accem (wW6ch is advettimed but unntft). b>ah Rbe &ud ibafe meet the
CAWD-9 UeiremetAU (eMc*te in the &M Of & &a U dictioary).

46



relations, or views, need to be created as the result of a combination of Select, Project and
Join operations. These temporary relations must be available for further Select, Project and
Join operations. 16

4.8.3 Update Notification

Since the relational database has a long persistence, plans stored there may remain of interest
for weeks and years. The request to be notified when information is updated similarly has
a long persistence. This has two implications: for human users, the agent may not be on-
line when the update occurs; for metaplanning agents (agents created to implement some
metaplan), these agents do no, -cist after the planning session terminates. Of course, changes
in human staffing of a planning organization also occur.

Our database serves as the entry point for external changes. We are not concerned
with how the database gets changed. The actual source, exact destination, and type of
input will be domain-dependent, but it merely has to conform to general relational database
standards. Our concern is with the need for the system to become aware of relevant changes
so that it can react appropriately. CAMPS supports this with database update notification.
Our assumptions are that the planner (user or inetaplanner) knows what types of changes it
needs to know about and that this planner is the most qualified to decide how to and whether
to react to a change. Consequently, update notification is limited to watching portions of the
database at the planner's request, detecting simple changes, placing a notification message
on an update-message queue, and making attempts to deliver the message until success is
achieved.

Update notification is a three step process:

1. the database is told to w.%tch for certain events;

2. the event occurs, causing the database to compose an update notification message; and

3. the message is delivered to an appropriate recipient.' 7

As planning proceeds, various agents tell the database that if certain portions of the plan
change, they should be notified. The database Wtslf maintains relations containing:

I. What events should be watched for.

"Ttia requirement is o4 difficult to meet. CAIPS can ewiy m=aufcture dummy permanent rtlatioas,
Howerer, becawwe a cAmPn moa may ted without removing the temporary rlationa, thtre may need to be
eme amzliay procedure fwr gettiag rW ot relations with a pa k.I.r name pattern.

"The qtility of the update moLification mechaaitm can be dramatically increased by obher'ing that the
inemase delivry iechaniams can a4o ac as a nwoe for a aigle ue, &ad as apeWal-purpao memo patLsai
mechanim among SEVe User&.

47



2. Who should be notified should a vatched-for event occur.

3. What notification messages are pending delivery to various Vgents.

The bottleneck of update notification is the process of watching the database. Therefore,
our approach tries to minimize the amount of work performed by a database update. Towards
this end, we are reluctant to require the database to perform matching on updates to see if
events have occurred. Instead, we rely oa a relation and/or r-zord marking scheme (see [2]
for details).

4.9 Interface

Planning is an inherently distributed application. MonitoAng the execution of a plan in-
volves different concerns and is probably physically remote from the planning and replanning
function. For "large" plans (i.e, phns whose execution involves a large organization), the
planning and replanning functions dhemselves are lik-ly to be both physically and intellec-
tually distributed. How, then, can partial and complete plans and observations concerning
the execution of those plans be communicated among the planners and execution monitors?

Developing plans without communicating them is surely a waste of time. We would prefer
that plans be communicated in a form that could be viewed by the recipient according to
the recipient's individual conzerns. Ideally, the recipient could explore alternative schedules
and resource allocations, both to see ihe con.equences of those changes and to understand
why the plan is the way thai it is.

Unfortunately, the most common means of communicating plans-pieces of paper-can
only be viewed as the presenter wished, and cannot be explored in any way other than
conversatiou with the original planner. A conscientious planner in a mature planning orga-
nization would probably produce an informat'on package containing the same plan viewed
in a number of different ways.

A better way lo communicate plans is to store the plan itself in a database (specifically,
a relational datat-se). Armed with appropriate graphics programs, the recipient of the
plan could produce pictures, graphs, PERT Charts, Gantt charts, or whatever else desired
from the plan in the degree of detail the recipient wished, customized to the interest of the
recipient.

CAMPS provides a number of tools which enable a user to display data in a number
of ways. The user can customize thece tools to produce domain qpecific capaliiities. For
example, we have introduced &.. "forms" interface windows in support ot the AM PS domain,
The forms simulate standard paper forms already used in Air Force miesion planning. The
forms tend to focus the user's attention on the details of a specific task from a specific point
of view. New forms can be added easily and switching between alternative lorms is a Rdmple

menu operation.

48



CAMPS provides a flexible and extensible interface. The interface consists of some number
of configurations. Each configuration is composed of some number of panes. Each pane is
capable of displaying some type of data, e.g., plan element inspector, tables, graphical data,
and LISP/text interaction. Plan element inspector panes typically display the slots of a plan
element. The user can "inspect" any slot of a displayed plan element via a choice of a menu
associated with the plan element inspector pane or with the plan element itself. The table
panes display data in somo type of tabular form. Typical displays in a table include database
contents, a table of constraint instances associated with some plan Plement, the task-subtask
itinerary of a plan, and the metaplan directory. Graphics panes dsplay PERT charts, gantz
charts, histograms, and the plan element hierarchy.

With the exception of the interaction window, each pane is scrollable, either through use
of the mouse or via a compressed pop-up window (for the graphics panes), and each pane is
automatically updated when data it contains changes (i.e., as a result of constraint firing or
planning).

Configurations are controlled by a "display manager" which has evolved throughout the
course of the project from an overly controlling agent, to a device which will inform the user
of the best place to display some type of information, and let the user select the place of
his/her choice. Additionally, the display manager controls the display of menus (both pop-up
and stationary).

The user is presented with an array of displ, y capabilities for

1. filtering what is being displayed (displaying only a subset nf slots of a plan element),

2. determining the format in which to display the data (through selection of a tool such
as a pert, gantt, histogram, table), and

3. obtaining synchrony between different panes of a configuration (dvJjusting the time scale
of the histogram or gantt to match each other).

The system also provides "user experience modes" (novice, normal, developer, power),
some HELP, and a limited amount of explanation which describes haw wetaplans are being
used and the reason for constraint violations.

49



5 Using CAMPS in a Domain Application

Thus far, CAMPS has been used to develop two domain application systems: AMPS-an Air

Force tactical Mission Planning System, and EMPR.SS-IIn, a NASA space shuttle mission
planning system. For each of these domains, there is a high demand for the specification of
tasks and their required resources. Additionally, each of these domains exist within a real
time environment where information about changes in the environment necessitate changes
to paxtially or competely planned missions (interrelated sets of tasks).

The simplest kind of planning problem for which Al (or knowledge-based) techniques
appear necessary has a list of tasks given in the goal state, and furthermore has the property
that a complete list of tasks can be effectively enumerat,d from the planning problem state-
ment. That is, no significant heuristic search is needed to find out what tasks are required in
the solution. However, in the planning of the missions described in this section, there is an
element of strategy: what goals should be achieved in the near term (a day or two), which
targets should be selected, etc. Excluding these strategy decisions, the tasks that constitute
a mission plan can be effectively enumerated (a "strike" task against each target, with "sup-
port" tasks as appropriate for each "strike"). In this context, the planning problem becomes
one of mixed resource allocation and scheduling. Each task requires some set of resources
(the selection of which are subject to a number of constraints), and is to be scheduled such
that the resources are available.

If the tasks in a "mission" planning problem do not interact, then obviously each can be
planned independently. If each- mission can be described as a series of slots (or blanks on a
standard form) to be filled in, then the form rf the planning problem can be simplified to
finding a consistent assignment of values to those slots. Simple approaches to solving this
kind of planning problem can be made to work, particularly if application-specific problem-
solving knowledge is exploited. For example, there is usually some ordering of slots which
minimizes the amount of backtracking required in a generate and test algorithm for filling
those slots.

For both of the applications described here, typical system usage is envisioned to consist
of a user starting up the workstation and logging in to initialize the application system to
the particular user type.1 8 As part of the application system's construction, the knowledge
base, meta-knowledge base, and toolkit are pre-loaded (the formalisms are, of course, integral
parts of the CAM PS architecture). As the user begins to use the toolkit, working memory is
filled from the external shared relational database. As the user continues to use the tools
to manipulate tasks and resources represented in working memory, various meta-knowledge
is brought into play to help the user accomplish goals as detected by the toolkit. The
correctness and quality of the tasks being manipulated is judged using the knowledge base of
plan elements, metaplans, constraints, rules and predicates. At times, the user can request
(either implicitly or explicitly) that consistent portions of the working memory be written

"6 There we ma•y categories o! uwr atd cAmws supports four type.--novice, developer, normal, and power.
For the moit put, we describe how a normal vact would use the application oystem, sad not how the -Acvoper
is using c~ums to develop an applicatioa.

so



back into the relational database so that the results become "visible" to all the users of that
database (See [5] and [61 for further details).

CAMPS has been designed to operate in realistic, real-time environments. In the real
world, circumstances under which a plan is made can change, either during the planning
process or when the plan is being executed. As real-world planning environments contain
uncertainty, the success of a plan may be predicated on some condition which cannot be
determined at the time the plan is being constructed. However, the real-time requirement
precludes the system from reformulating a new plan when new information arrives. CAMPS
supports real-time requirements with several mechanisms which allow it to efficiently refor-
mulate existing plans in reaction to changes or new infoirmation. These mechanisms have
been described in Section 4.8.3 and Section 4.7 and include database update notification,
justifications, and hypothetical worlds.

5.1 AMPS-Tactical Mission Planning

AMPS is an Air Force Mission Planning system which has been developed using CAMPS.
The purpose of AMPS is to support Air Force tactical mission planners in the developent of
tactical fighter mission plans, particularly, offensive counter air (OCA) missions. The domain
of AMPS is a decendent of KRS (KNOBS Replanning System) and of KNOBS (KNOwledge Based
System)[4, 13] before it.

AMPS' initial domain model was derived almost exclusively from KRS. However, the
AMPS domain model has been extended aud refined with information derived from L multi-
tude of sources, e.g., monitoring the behavior of planners within the planning environment
(at military exercises), and by monitoring the efforts of more applied tactical mission plan-
ning systems, such as TEMPLAR[20] 19 The OCA is one type of tactical fighter mission. The
intention of the OCA is to seek out and neutralize or destroy enemy aerospace forces (e.g.,
airbase facilities) at some specified time and place. With guidance from the theater com-
mander, information on available assets (aircraft, ordnance), and intelligence Information on
the state of the. battle and the existance of targets, planners propose missions in order to
obtain the goals set out in the Commander's guidance. Information about the missions to
fly for any particular day are placed on a daily Air Tasking Order (ATO).

The development of the ATO begins approximately 72 hours before the first ATO mission
is to fly. During this time interval, plans are devised by the planners to effectively utilize
resouces, e.g., aircraft, ordnance, pilots and to support as many missions as possible. Obvi-
ously, during this time interval, several environmental conditions are likely to change, e.g.,

S*Ta~wLAR was designed by TRW to serve a specifc client, the 9th Air Force. The interface in particular
was heavily infuenced by the paper forms now used by 9th praners to epecify OCA and SUpPoTt Miwons.
ThMPLAR was developed to plan OCA and support minions down to the lowest level of detail that does
not require route plauning. It was designed to support a medium Aped group af planners working in one
room togother under distributed conditions. That is, more than one planner will be accesing the TEuFLAR
database. at the ame time, even though these planners will be working on different miuioa&

51



weather, asset availability, target locations and validity. Because of this, the planners must
continuously monitor these conditions and revise plans as necessary.

Tactical mission planning is a highly dynamic problem solving activity which requires
coordination among several individuals responsible for either monitoring or making decisions
about different attributes of the overall problem, e.g., intelligence officers monitoring targets,
weaponeering officers suggesting ordnance. Communication among the different problem
solvers is imperative in order to develop viable plans. In our observations of the planners
during military exercises, communication is achieved verbally, through a few automated
systems, and by walking paper from organization to organization.

5.1.1 AMPS System Implementation

"AmPS is expected to support the tactical mission planning environment, a real-time planning
environment. In this section we will described how AMPS has been developed to perform this
task.

The purpose of AMPS is to aid the decision making activities of tactical planners in devel.
oping tactical missions, particularly Offensive Counter Air missions, in managing resources,
in providing information about changes in the environment, and in replanning in response
to changes in the environment.

In our view of planning, the planner (human or other) would be interested in monitoring
the status of missions, e.g., OCAs. The planner would also be interested in monitoring
available assett and the weather at friendly and enemy locations. As AMPS views planning
as filling slots subject to constraints, each of these concepts are expressed in AMPS as plan
elements with associated slots. Information on the particular aspects of a thing are stored in
the database. Thus, for example, information on the weather at particular airbases is stored
in a database relation. When a change occurs in the environment, such as to weather, the
database will -hange, and the CAMPS update notification mechanism will detect the change
and will inform the user. At a higher level, there are strategies (metaplans) that guide
AMPS in seecting which slots to fill first, how to fill them, and what to do if problems are
encountered.

The user (a planner) can interact with AMPS through the standard CAMPS interface, or
through specialized forms which emulate the paper forms which are used in the planning
environment. Amps contains a set of forms, each tailored to provide pertinant information
to a user with a particular need, e.g., asset information, weather, OCA inventory, a target
list.

The target planning worksheet is the top level form within AmPs. This form was developed
with suggestions from tactical planners " the 9th Air Force. The target planning worksheet
is used to plan packages (these contain a related set of missions, such as an OCA with a air
escort and/or a SAM suppression mission). Through this form a planner can specify targets
(e.g., an airbase), identify target aimpoints (e.g., the runway of an airbase), view and use

52



weaponeering options (ordnance and/or aircraft types as supplied by INTEL), and create
new missions.

A planner might begin a planning session by viewing a list of targets for a particular day.
For any of these targets, the system can readily inform the user of packages and/or missions
which have already been targeted for the specified target. The user can select one of these
to work on (perhaps change and replan some aspect of a partially planned mission) or the
user can create a new mission for the target. AMPS accesses information from the knowledge
base and database in order to support the user.

For any selected mission or for any newly created mission (represented as a plan element),
the user can view the slots of the plan element in various levels of detail, filling in the slots
which make up the overall plan as he/she chooses. AMPS views a plan as a collection of tasks
(a project) arranged into a task/subtask tree. Each task has associated with it temporal and
resource requirements. Constraints control the way these slots are filled. The user can fill
in slots manually, with some support from the system (e.g., automatically filling slots), or
the user can let AMPS complete planning automatically with use of the metaplans. When
the user chooses the latter path, AMPS provides a description in the interaction window
which describes how metaplans are filling in slots, how resource utilizations for aircraft and
ordnance are being established, and how flixit metaplans are being used to resolve any conflicts
encountered while planning.

If a constraint is violated, the slots involved in the constraint violation will be backlit and
the user will be able to obtain information on why the contraint violation occurred with use
of the system menus. Since constraints are declarative, the user can change constraints when
the p1•anning environment changes so significantly that current constraints are no longer valid.
The user can also invoke the hypothetical planning mechanism in order to explore possible
plans, e.g., using a different aircraft.

Task and resource info~maation are stored in the plan element hierarchy and in the rela-
tional database. The user can automatically create new tasks when he/she desires to explore
a plan in more depth. The user can view task and resource information in a number of
ways, e.g., through listings of task/subtask itineraries, through port charts, gantt charts, and
through the histogram. For example, in order .o examine how resources are being utilized
during some time, by a particular mission and/or other missions, the user can display the
resource usage information as a histogram, e.g., the histogram displays F-16 aircraft usage
throughout the time when F-16s are being used. The user can adjust the histogram to the
time frame of some mission or vise versa in order to see how much of resources of type F-16
are being used by some OCA mission.

The AM PS system is complete with demonstration scenarios and a tutorial which describes
how to use the system in either the developer or the user mode.

5.2 EMPRESS

EMPRESS-I and its successor EMPRESS-uI are knowledge-based systems which were devel-
oped jointly by NASA at the Kennedy Space Center (KSC) and The MITRE Corporation

53



from 1984 to 1988. EMPRESS-I/I support planning and scheduling in the space shuttle pay-
load processing domain by generating preliminary mission schedules, identifying conflicts,
monitoring resource utilization, providing graphic support, and enabling users to explore
alternative futures.

EMPRESS-I/In were designed to incorporate the tools and problem solving heuristics em-
ployed by a NASA expert in the planning and generation of payload processing schedules.[31]
EMPRuss-I could generate preliminary schedules for payloads by referring to it's knowledge
base of schedules, standard flows (planning strategies), resouces, and requirement dates.
Much of the payload processing knowledge of EMPRESS-I was contained in "standard flows".
These schedule "templates" were developed by the NASA domain expert (prior to EMPRESS-I
development) as a way to quickly generate preliminary schedules. They represent his experi-
ence with payload processing to date, and were revised accordingly. With information from
the standard flows, rules, a resource tracker and a constraint checker, EMPRFSS-I could build
schedules, maintain task relations, and manage resources.[25]

EMPRESS-lI was developed to extend the functionality of EMPRESS-I and to correct some
of the inadequacies identified in the underlying architecture. The domain of EMPRESS-If
is essentially the same as that of EMPRESS-I (although the resource information was sub-
stantially extended) but the architecture of EMPRESS-II is CAMPS. This architecture enables
EMPRESS-I! to represent conceptual abstractions (task and resource information) internally
in a declarative form. Data (concept instances) are stored in a relational database, thus
permitting the exchange of information with other NASA planning tools. The architecture
also provides improved constraint checking and resource tracking.

Unlike EMPRESS-I, EMPRESS-I generates tasks for mission payloads as a function of gen-
eralized notions of the processing requirements of all payloads (as represented in tha plan
element hierarchy and in the task template declarations), coupled with specific requirements
of a payload, and automatically plans and replans activities with reference to domain specific
problem-solving strategies. (The reader will find a more detailed discussion than we presnt
here in [31] and [45].) For example, rather than storing the entire task/subtask structure,
EMPRESSI-l uses task templates associated with specific types of tasks. A task template says
that a task of type UNASA shuttle mission" has as a subtask a task of type "level-I process.
ing." Another task template would say that a shuttle mission has a "fly mission" subtask.
Associated with the notion of "fly mission" would be a task template saying that it has a
prerequisite of "level-I processing." A task template can have a condition associated with
it, so that if the condition is true the tOmplate is expanded, while if the condition is false
CAMPS knows the template will not be needed. One advantage of the template approach can
be seen when the condition is indeterminate at the time the template is processed (that is,
we may not know enough about the task to tell whether the template applies). In this case,
the template remains attached to the task: the architecture knows that when more infor-
mation becomes available the template shou!d be reconsidered. As EMPRESS-n missions can
"have hundreds of subtasks, each with various resouce requirements, the CAMPS task template
mechanism was heavily used by EMPRFSS-lI.

Through the CAM PS architecture EM PREuSS-Il makes a much richer use of constraints than
did EMPRnss-i. For example,. the estimated durations for specific tasks are computed as

54



assumptions. 20 The assumption "expect a task's duration to be the historical average
duration for that type of task" is represented as a constraint. Additionally, EMPRESS-Il has
a completely declarative formalism for expressing constraints and has some ability to change
constraints "on line." This capability is essential to a dynamically changing environment such
as the payload processing domain.

While the EMPRESS-I! domain requires a heavy use of update notification (to track space
shuttle manifest changes) and hypothetial worlds capabilities (to propose contingency plans
and to hypothetically evaluate changes to future manifests or to scarce resouce changes),
development of the system concluded before these capabilities were stable enough to be
implemented and tested.

EMPRESS-II has demonstration scenarios and a tutorial which describes how to use the
system in either the developer or the user mode.

'See [6] for adesctiptioo of how c~Acps ut~imie a hieaaxchic&I PERT technique u a problemav1ing ttrakVg
foe devising schedules.

-55



6 Lessons Learned

This chapter describes certain capabilities of CAMPS at a more detailed level, emphasizing
problems encountered, their solutions, and current limitations.

6.1 The CAMPS Plan-Element hierarchy

In a planning system built on CAMPS, the types of objects that are found in the application
domain, and are dealt with by the planner, are represented as plan-elements. These include
types of tasks, resource pools, resource utilizations, organizations, locations, people, and
physical objects. Specific types of plan-elements are usually domain-specific, but these are
actually more specialized examples of domain-independent types known to the general CAMPS
planner. This characteristic is common in AI reasoning systems and lends itself to the use
of a knowledge hierarchy in order to capture the similarities shared by different classes of
objects. In CAMPS systems, the plan-element hierarchy fulfills this purpose.

6.1.1 A link that connects several components of camps

Our experience with the plan-element hierarchy has been generally positive. The knowledge
hierarchy is the core that connects many components of the CAMPS planning system. It
supports the CAMPS slot-filling model of planning, specifying the slots of a plan-element
instance, the type of slot (simple or multi-valued; local, class, or remote; optional inverse
relationships, etc), and what types of fillers they accept. It also h-s pointers to the database
that guide the instantlation of objects in the database into working memory, or the storing
of new or modified objects back to the databa.se. Most constraints are also attached to
the hierarchy and automatically posted on new instances. Inheritance supports the easy
extension of the hierarchy to include new domain knowledge. The system knows when the
hierarchy has been modified and automatically recompiles it before the next instantiation
occurs, in order to Incorporate the latest changes. All planning objects are represented by
plan-element instances. Some, like tasks and resource utilizations, require most of their slots
to be filled as part of the planning process. Others, like physical objects, have slots whose
values are obtained from the database and usually remain static; when changes do occur,
they are more likely to result from external reports rather than internal planning actions.

This representation also supports a dual view of the planning problem that CAMPS is de-
signed for. Planning may be viewed as involving a sequence of tasks that require resources,
or as a sequence of resource utilizations that enable certain tasks. Each view has its ad-
vantages in different situations. For example, resolving a difficulty in allocating a resource
for a particular task may be approached more naturally by considering the planning of the
resource utilization rather than the consuming task (even though each points to the other
and they share many common slots). CAMPS supports both approaches, mostly by falling
to distinguish between them during the uniform processing that it gives to all plan-elements
and their slots.

S~56



6.1.2 Remote slots

Pianning in CAMPS is oriented toward the plan-element instance, its slots, and the constraints
that judge the values found in these slots. Naturally, there are also relationships that extend
across different plan-element instances. CAMPS handles these situations mostly through the
use of remote (indirect) slots. This addresses a problem that is encountered throughout
CAMPS. Suppose a person is defined with mother, father, and maternal-grandfather
slots. The problem is how to handle both the person's maternal-grandfather slot and the
person's mother's father slot. Clearly these both point to the same individual, and it would
be wrong to implement this in a manner that would allow two different slots with two different
values (even if constraints or demons were (meis)used in an effort to enforce their equality).
CAMPS handkc-s this problem by making the person's maternal-grandf ather slot a remote
slot which has mother as its "through slot" and father as its "target slot." That is, accessing
one's maternal-grandfather involves finding one's mother and then finding her father. Remote
slots are fairly invisible to the user. Accessing the person's maternal-grandfather slot

returns a slot variable and its value just as any other access does. It happens, however, that
this access will have exactly the same return as accessing the mother's father slot. In both
cases, the same slot variable is found.

While we are convinced that this is the best approach, there are a number of problems
associated with it. One problem is what to do when the through slot is not filled. What
if we have information about a grandfather before we learn who the person's parents are?
Or, suppose a certain subtask normally has to start at a time that is remotely specified by
its superior task, but that it is still reasonable to be able to plan out this subtask as an
independent task. To support these cases, we need a way to locally store a remote value
when the through slot value that leads to it is unknown. CAMPS supports this by using
"postponed remote variables" that are stored locally on a plan-element instance and serve as
temporary slots in the absence of the true remote slot. The next problem is that the through
slot may be filled in after a postponed remote value has been specified. Later, the through
slot value may be deleted. CAMPS has to maintain a watch on through slots and keep the
remote slot and its corresponding postponed substitute consistent whenever a value is filled or
deleted. Determining what values and constraints belong on which variable can be difficult.
Installation into the database also has problems dealing with remote slots. If a through slot
is unknown, it is necessary to either skip storing the value or to force the through slot to
be filled, perhaps with a newly created instance that is mostly skeletal. Neither solution is
entirely acceptable.

Constraint instances involving remote slots pose a particular problem. One difficulty is
ensuring that a constraint finds the appropriate argument. Constraint instances in CAMPS

are normally assigned their arguments (usually slot variables) at posting time. They are then
ready to fire without any further preparation, since the variabies do not change even if their
values or restrictions do. But, this is not true for remote slots, making it necessary for some
arguments to be substituted whenever remote links are made or broken. There can also be
a problem In determing which slot a constraint should be written for. When a remote link
is made, the postponed and remote variables share constraints. But if it is broken, each sees
only the applicable constraints from Its local plan-element. There is usually a correct choice

57



of slot for which the constraint should be written. In rare cases, both plan-elements may
need the same constraint to support situations where they are planned in isolation.

6.2 Interaction with the relational database

The relational database in CAMPS is used for several different purposes. It is the external
repository for information about the domain and the partial or completed results of planning.
CAMPS instantiates information from the database into plan-element instances in working
memory. The results of its planning can then be installed back into the database. The
database is also the link between the planner and the external world. Plans produced by
CAMPS are coMMunuicated to the intended recipients through the database. External changes

to the domain are communicated to the planner by changes that are made to the database by
external systems. Finally, an-interesting use of the database is its role in the generation and
judging of candidates to fill slots in plan-element instances. A particular relation may be the
repository for all known objects of a certain type. As such, it can provide an initial listing of
candidates for slots that need to be filled with that type of object. A database predicate can
be used by a constraint to enforce a relationship between slots that draw their values from
the database. In addition to judging the acceptabilty of a candidate, it can also be used to
generate all values for one slot that satisfy the specified relationship with any existing fillers
of other slots.

6.2.1 Compatibility of CAMPS with a commercial database

The relational database currently used with CAMPS was developed for this project for con-
venience (and necessity) and was never meant to compete with a commercial database. Its
major characteristic is that it runs on the same machine as the planning system and is,
in fact, entirely loaded into working memory. We have always envisioned that most real
applications of CAMPS would make use of a commercial database and have been careful to
adhere to relational database standards and to describe the set of commands used by CAMPS
that would have to be supported. It Is however conceivable that CAMPS can be used with the
present database. The TEMPLAR project, a fielded application in the AMPS and KRS domain,
actually took the approach of using a database residing in working memory. Although that
system is pushing the limits of RAM and disk memory on a Symbolics 3-600 series, it appears
to be successful.

The way in which CAMPS uses its database does pow some problems for its use with
a separate database. It is uncler how much of the database would in fact be loaded into
memory as planning progresses. There are certain actions taken by the planner that involve
storing previous database results for future use. It is not certain how this would be done once
a clearer separation between the database and planner is made. Perhaps, the planner could
store a previous database result and later query the database, passing the old result in as
an argument. Alternatively, the planner might need to store a result in a form that it could
operate on directly. This would, of course, introduce more of the database into memory (and

5S



possibly database operations into the planner). The most obvious use of the database during
planning involves the need to draw on the database when instantiating known planning
objects into plan-element instances in working memory. This involves essentially one-time
actions, since a subsequent search will find the actual instance, but even so there is a need to
limit, when possible, the potentially enormous number of objects that might be instantiated
during planning; this issue is discussed in the next subsection. Here, we will describe two
other activities that also account for intense database activity during planning. These are
the use of database predicates and slot candidate generation.

Ordinary constraint evaluation may rely on predicates that are based on the database.
These normally check whether certain combinations of values, corresponding to the values
found in specified slots, can be found in a particular relationship in the database. Obviously;-
predicate evaluation is an extremely common action during planning. If the database needs
to be queried (across machines) each time such a predicate is checked, then the link to the
database must be very fast. Consider what actually happens when a constraint is written to
enforce consistency between the selected values for the AIRBASE, UNIT, and AIRCRAFT-
TYPE slots of a tactical air mission. This makes sure that the selected unit is assigned to
the airbase and possesses the desired type of aircraft. This is the sort of information that
is both fairly static and can be found in the database, which makes the use of a data.base
predicate appropriate. (Note that this single constraint and its predicate could easily invo've
additional slots, making sure that the selected ordnance can be carried by the type of aircraft,
that ordnance and aircraft are appropriate for the selected target aim-point, etc.)

The database predicate includes a specification for forming a single relation that contains
all known legal combinations of values. Firing this constraint would impose restrictions on
each of the three involved slots. Initially, each restriction would bias its slot to celect one of
the values found by projecting on the relation's attribute that is associated with that slot.
If a value is actually selected for one slot, the predicate's relation is changed to one that
is formed by selecting on this value. For example, selecting an airbase might restrict the
unit to the two units assigned to that airbase and the aircraft type to the three types of
aircraft assigned to those units. At all times, each slot is restricted to values found in the
current relation associated with this instance of the database predicate. Obviously, we could
also use a scheme where restrictions are in the form of various operations on the top-level
relations of the database. The CAMPs database is much too slow to compute these operations
from scratch during each evaluation of the predicate. A faster database along with delaying
evaluation or remembering previous results might allow a cleaner separation between CAM PS's
database predicates and the actual database, but it will still require intensive querying of the
database.

Another consideration is the way in which the database is used to supply candidates for
certain types of slots. Currently, the first time CAMPS needs to look for a candidate for a slot
that is to be fll~ed with an instance of a particular type, it creates a generator that points
to (the database names of) all of the known instances of that type. This initial generator
is stored in memory and is used as a template for all iubsequent candidate generators of
instances of this type. This avoids the necessity of going to the database every time we
consider a new slot that takes the same type of candidates, hut it leaves us with two problems.
One is the need for the generators to learn about new candidates which are either added to

59



the database or created from scratch in memory; this can be supported without much trouble.
The second problem is the need for the generators to frequently give some consideration to
each of the possible candidates.

Generating a good candidate starts off with the notion of selecting one possibility, in-
stantiating it into a CAMPS internal value (in the case of relation generators), and then
testing this candidate against the known restrictions represented in the generator's filter
tree. Ideally, this would look at only one candidate, avoiding the problem under discussion.
Unfortunately, it is often the case that the only good candidates are well down the list,
or even that no candidate looks particularly promising and we need to find the one that
is relatively the best. Therefore, the generator most often tries to prefilter its candidates,
ranking them from best to worse by performing low level, relatively inexpensive operations
that potentially look at all of the candidates.

Currentiy, during the creation of the first generator of a given type of instance, camps
actually rreates a list of all possible values drawn from the relation. During prefiltering, it
creates a weighted list, grouping candidates having the same associated belief and disbelief.
This is not quita as bad as it might seem. First, restrictions on relation generators are
converted to operate on extenial database values rather than internal instantiated values,
so the prohibitive coat of instantiating all candidates is avoided. Second, restrictions often
take the form of one belief and disbelief in certain candidates and another belief value that is
assigned to "all others." This avoids some of the need to explicitly operate on all candidats.
Finally, there is good potential to delay much of the work. The initial candidate list can be
replaced by a database operation that provides these candidates. Similarly, the preffitered
weighted list of cmdidates can also be expressed in terms of operations. Generating tht,
Lest candidate would involve selecting the operation with the highest belief and executing
it againt the initial candidates (expressed as another database operation). This would avoid
actually looking at all the candidates. Part of its ovwrh "d would result from the possibility
that many of the weighted operations would ultimately be dizcovered to yield the empty set.

6.2.2 The database as a lHuk to th•e external world

The CAWPS relational datab.se serves as the planning saytew's link to the external world.
The useful results of internal planning end up in the database. Their disseiniation relies
on standard database ope•ations. Any other system tbht can .s.- a relational database can
accesr this information for its own purposes. Similarly, external hanges are introduced to
CAMPS via the database. CAMPS i5 written with the assumption that the pwanner will know
what sort of cha,-es will need a response. Watches are placed on applicxble portions of
tha database, and changes trigger the formation of mensages that are initially v.ored in the
database. Regular attempts are made to deliver these mesmages to the requested recipients.
Watchiing requ-.oted aras and delivering messagtes are fairly simple procedures and fulfill
the responsibility of the update notification process. (It is up to the recipient to update
the working metuory and to respond to changes if necessary.) This approach relieves the
planning system of a lot olf burdens. There need be no worries about how information is
entered into the database. The develop wr can also concentrate on the planner lnst ',•f the

60



external systems that it may be connected to eventually. A simulation of an external system
can be as simple as a one line relational database command that modifies a few values in a
relation. The events that are triggered by this action are much more interesting than the
triggering process.

6.2.3 Working memory and the database

Most of the planning in CAMPS takes place by manipulating objects in the working memory.
These objects may be newly created or instantiated from the database. It is not necessarily
the case that these objects will be consistent with applicable parts of the database. Changes
made by the user/planner will not be seen in the database until they are explicitly installed.
This is usually not a problem. The system knows what is in working memory, and others who
are accessing the database should not normally see intermediate or tentative results. Changes
made by others to the database can have an adverse affect on planning if the working memory
does not know about them. But, this is the motivation for update notification. If a change is
important, there should be a watch for it which will trigger notification of responsible agents.
CAM PS currently supports only one user. If we move to multiple work stations, then these
issues will require further attention.

in general, interactions between the working memory and database operate smoothly.
Installation into the database has not been tested in an environment where regular daily
changes are being made. With our resident database, installation is actually a two step
process. Changes are first installed into the relations in working memory. The second step
is to save these changes out to appropriate files which store these relations. Developers
usuIly like testing the system against a known state of the world instead of dealing with
(and taking the time to manufacture) constant changes. Therefore, moat installation that
has been performed has avoided the second step of permanently altering the database.

There are also two instantiation issues that deserve attention. CAM PS supports refinement
of instantiation type. That is, a request to instantiate requires a unique Identifier and a
type- of object, but it is not necessary for the type to be absolutely specific. A request
to instantiate something called my-car as a vehicle might actually return an instance of
type porsche (see the section on hypotheticals). If the proper information is available in
the plan-element hierarchy and the database, the system will be successful in starting with
vQhicle and refining it to porache (perhaps passing through an intermediate type of car).
Any refinement should be supportable with a little effort.

CAMPS employs a delayed approach to instantiation, When an ob *:-t is instantiated, it
may have a slot whose v-lue is known to the database. But, if this value is also represented
internally as an instance, the ikstantiation proceu will simply fl ýhe slot with a "DB-Iin)? to
the database. It will stay that way until something causes that slot to be accorsed, at which
time the DB-iUn, will be converted into an instantiated wadue. Additionally, restrictions
on a slot that draws candidates from the database are executed in a manner that tries
to avid instantiating the database values. Only the candidate that is actually selected
for consideration is instantiated. Despite this delayed scheme, however, the system will

61



sometimes do quite a bit of instantiation in the middle of planning. Some of this is dearly
unavoidable, &- the system accesses many values during its planning deliberations. Still, at
times it mi .y seem to be excessive. Sometimes there is instantiation ripple, where instantiation
of an object will trigger instantiation of a parent or subtask, apparently unnecessarily. This
typically involves the accessing of remote slots, We may be able to restrict this ripple. But,
in any case, no damage is done and these objects usually need to be instantiated eventually.

6.3 Constraint and predicate evaluation

In CAMPS, plani.ng is accomplished by filling slots in plan-element ixstances. This is nor-
mally accompanied by the firing of constraints which evaluate the acceptability of the slot
filler. Constraints play the most important role in deciding 1bw a particular slot should be
filled. Even when higher level strategies become involved in slot filling, constraints provide
important input to them and constraint violations are often responsible for their invocation.
The conditions that constraints try to enforce are detected by predicates. Similarly, a con-
straint will use predicates to test any applicability conditions that it may have. Predicates
are evaluated by one or more combinations of three possible means of evaluation, Primitive
predicates (which should be domain-independent and found in CAMPS) lead to hand-coded
LISP functions. Database predicates check the database for the presence or absence of var-
ious values. Finally, rules make use of antecedents which are themselves predicates, eligible
to be evaluated by any of the available methods.

6.3.1 Simple constraints lead to large numbers of alots

In KRS, constraints could be checked using arbitrarily complicated LISP code with no limit
on possible side effects. That approach can be very tempting to an implementor who is
searching for a way of accomplishing a difficult planning action, but it naturally has some
serious limitations. The planning system could not be expected to possess much of an
understanding of such constraints or to explain their actions to the user who, in turn, would
not appreciate having to write such a constraint in order to modify the planning system.

CA M Ps is oriented toward constraining slot values using fairly simple constraints. Of the
three types of predicates found i, CAMPS, those using rules and the database are simple to
write and iipderntand. Only hand-coded predicates have any opportunity to be complex.
Even here, however, the situation is not comparable to KRS. First, our intention has always
been that virtually al hand-coded predicates would be domain-independent and, therefore,
located in CAMPS. We want to provide for efficient checking of conditions that are common
to many applications and to provide a basic set of primitive predicates for use in domain
rules and constraints. But, we want the umer of CAMPS to be able to enter simple declarative
rules and database predicates rather than writing extensive LISP code, a difficult task which
is subject to abuse. Second, the side effects of predicate evaluation should always be limited
to the posting of restrictions on a slot's candidate generator. Even when a predicate is fairly
complex, the resulting restriction that it posts on a slot is typically much simpler and easier
to understand.

62



In order to suppoi, the use of mostly simple constraints, however, most planning systems
using CAMPS will probably be found to have mc.e slots in their plan elements and large
numbers of simple constraints. These additional slots often will represent what would oth-
erwise be intermediate values in an algorithm employed by a complicated, black box type of
constraint. On the positive side, these extra slots tend to represent reasonable planning pa-
rameters, and the sophisticated user often appreciates having the option of specifying them.
On the other hand, going through the steps of filling these slots is less efficient than passing
through an intermediate value in an algorithm. Another advantage to having more slots is
that breaking a problem into a greater number of steps makes it easier to solve, understand,
explain, and debug. However, this same situation also represents the biggest weakness to
this approach. In writing several constraints on several slots in order to enforce a certain
relationship among them, it is often easy to lose track of the central, higher level idea that
one is trying to enforce.

6.3.2 Effects of slot filling order

The order in which slots are filled can be critical. This is not a new revelation, but the
CAMP°S approach of having lots of slots (as discussed above) seems to intensify this problem.
The problem is simple. Before filling in a slot, the system or user should first try to fill
in slots whose values constrain that slot. Without knowledge of these values, constraints
on the slot will not have the necessary information to contribute to the selection of a good
candidate. Knowing what slot to fill next is, however, a difficult task. As an easy example,
consider a constraint that says the duration of a task is the difference between its start and
end time. In one situation, it may be possible to calculate the necessary duration based on
the type of activity. This would directly determine the finish time once the start is known
(or vice versa). However, it is also possible that the start and end will be determined by
other means (suppose the task is to wait for something to happen) and will then determine
the duration. There is almost never a single correct ordering of slots. The system must be
able to determine the correct order in the current situation, taking into consideration, for
exnmple, the fact that the user has already set a slot that would normally be filled towards
the end when planuing from scratvh.

6.4 Slot candidate restriction

The mosi. important information associated with a slot is its current fixed value and the
constraints that evauate the acceptability of this value. One prerequisite for automatic slot
filling is the ability to find candidates for a slot that agree with the specified content for
that slot (ie, they must pass a "type check"). A prerequiste for efficient planning is the
ability to select a candidate that will then pass all applicable constraints when tested bi
the current context. If a, serious constraint violation is detected, then it is necessary to
change a previously selected value, to decide that the violated constraint does not really
apply because of special considerations, or to continue with a flawed plan. Ideally, planning
wo~ud proceed without any backing up and without serious constraint violations. CAMPS

63



has low level mechanisms that tend to lead to the selection of good values to fill slots. This
is accomplished by the use of generators that are associated with each slot. A generator not
only produces an initial listing of candidates for the slot, but it is also capable of receiving
restrictions that are the side effects of constraint evaluations. By combining these restrictions
in a manner reflecting their importance, a generator can produce the candidate that is most
likely to satisfy all constraints on its slot.

6.4.1 Look ahead capability

The ability to look ahead, that is, to generate for a slot a candidate that is likely to satisfy
constraints, assumed a greater role in CAMPS than originally envisioned. One of the reasons
for (results of?) this was our slowness in developing an effective backtracking ability. Dumb
(chronological) backtracking in the AMPS domain tends to be very difficult since slots typically
have large numbers of candidates. Whenever reasonably practical, it seems easier to put in
the extra effort to avoid problems than to be forced to correct them. Even wthin a generator,
filtering individual candidates against restrictions is often a tedious and expensive operation.
This is not only because one often has to test a very large number of candidates to find
a good one, but also because it is sometimes hard to decide what "good" means. This
led to the development of prefiltering, which sclves both of these problems by ordering all
of the candidates, with their associated beliefs, best first. As it turns out, this can be a
comparatively iivexpensive operation for candidates derived from number ranges, and even,
for some types of restrictions, for candidates supplied by the database.

Our implementation makes use of a "filter tree" which incorporates all of the restrictions
on a particular slot derived from the bias-mode evaluation of one or more constraints. This
filter tree laboriously combines all of the beliefs, weights, and categories (fixed and calculated)
that are associated with constraints and predicates and their rule, database, and hand-coded
means of evaluation. We initially discussed many simpler, less brute-force schemes, but none
of these appeared to be adequate. The simplicity failed to represent the true relationships
between the various restrictions.

6.4.2 Detecting versus avoiding violations

When adding a constraint to a CAMPS system, it is necessary to consider possible differences
in detecting a violation and avoiding a violation. Sometimes what at first seems to be the
right constraint or predicate for enforcing or checking a relationship will turn out to be wrong
for the intended task, as evidenced by the subsequent planning behavior of the system. It
is important to understand what a constraint will actually accomplish, as illustrated by the
following examples.

Suppose we are planning a move-box task and want to ensule that we sedect a forklift that
can safely lift something of the box's weight. A constraint using the predicate (*greater*
?box-woight ?forklift-rating) would correctly detect any violation. But this does not
directly achieve our stated goal, namely to "select a forklift" that can lift our box. This does

64



not directly influence the selection of the forklift, and altering its capacity once it is selected
is probably not a realistic solution. Instead, using this constraint, we would be forced to
backtrack and try any other forklifts hoping one will eveintually satisfy the constraint. In this
case, we really wanted to use a more sophisticated predicate, (*filler-of-filler-greater*
?self :forklift :rating ?box-weight). This says that self (the move-box task) has a
:forklift slot whose filler (some forklift) has a :rating slot whose filler should have a
value greater than the box-weight. The difference is that this predicate has the capability
to post a restriction on the :forklift slot, telling its generator to prefer forklifts with at
least a certain weight rating. With this restriction, an acceptable forklift would probably be
chosen immediately. Notice that we would need an even more sophisticated predicate, or a
second constraint using this one, in order to restrict the selection of the box once the forklift
is known. It is not always necessary to look ahead in all situations, but it is a good idea to
be aware of what a particular constraint will do.

Suppose we want to write a predicate that checks whether a number is greater than the
product of two other numbers. The probable choice would be to write it as a rule-based
predicate. The alternative is to write a hand-coded predicate. This would not violate our
guidelines, since the predicate is domain-independent. It would also be somewhat more
efficient to evaluate. But, it would be much harder to initially write. Writing the rule is
quite simple:

(Defrule greater-than-producto1
((*times* ?product ?multl ?mult2)
(*greater* ?product ?number))

(greater-than-product ?number ?multi ?mult2)
:belief 1.0
:cbelief 1.0)

There is, however, a difference between this rule and the likely ha.d-coded alternative- By
itself, the rule does not have the capability of restricting all of its arguments. That 14, 3f
multl oad mult2 are known, the predicate can restrict the number slot to be greater than
their product; but if number and mult2 are known, the rule has no capability of restricting
multl. Both multi and the local rule variable product would be unknown in the first
antecedent and the rule evaluation would give up and return no opinion with no side effects.
If this restriction capability is desired, then it would be necessary to either write additional
versions of this ride or to write a hand-coded predicate that handles all of the cases.

6.4.3 Generation of corrective suggestions

A constraint can be tested in the make-true mode, normally after it hba been violated.
This mode operates in the same manner as bias mode, except that it attempts to produce
suggestions on how to bypass any violations that axe found. The advantage of this approL-h
is that it Is obtained at almost no additional cost to normal constraint evaluation. Its
disadvantage is that the suggestions are generated at a very local level. A violation of

65



(*greater* x y) would produce the suggestions to change the value of slot x to be greater
than slot y, or to make slot y be less than x. With the exception of some generated by more
complex predicates, most such suggestions are not very helpful unless they are judged by
an intelligent planner (human or metaplanning object). For instance, suppose that x is the
range of an aircraft and that y is the distance between its points of origin and destination.
Obviously, the system must not increase the value in the slot that holds the aircraft's range.
Instead, it must, by some means, know that an appropriate action might be to substitute
an aircraft having greater range, to lighten the load, add external tanks, or provide in-flight
refueling. Similarly, making the distance shorter cannot be accomplished by changing the
positions of existing airfields, but it might be feasible to select a different destination or
origin, or to insert an extra stop in between. Obtaining this knowledge through reasoning
from basic principles can be extremely difficult. CAMPS instead relies on fix-it metaplans that
have general or specific knowledge about correcting certain types of problems. A metaplan
called to handle a range problem will probably already have enough information available and
will not benefit from the additional, low level corrective suggestion. (How does the system
know which fix-it metaplan to invoke? We take the easy approach of allowing a fix-it goal to
be specified in the declaration of a constraint.) Since it is often the case that an intelligent
planner does not need the extra help, the usefulness of these suggestions is restricted to
situations where the planner is smart enough to interpret them but dumb enough to need
them. CAMPS makes very limited use of this capability, but we consider it an interesting
approach with greater potential.

6.5 Problem solving strategies (metaplans and agendas)

CAMPS has a strategic component, represented by metaplan strategies, that provides top-
down intelligence to guide planning. Constraints provide sufficient bottom-up knowledge
to normally support the automatic filling of a single slot with the best candidate. The
metaplannhig mechanism supports the automatic planning of the most complex domain
tasks. Metaplans translate to an ordered sequence of planning steps. Some metaplans have
specific knowledge of how best to plan a particular task, including what slots to fill in what
order. Some variations on these metaplans might be particularly applicable for replanning
and others might specialize in replanning in time critical situations. Other metaplans are
designed to fix problems (e.g., a constraint violation) using knowledge ranging from general
planning considerations to very domain specific techniques for fixing specific problems. The
strategic component is driven by the posting of goals. Since it is possible that many metaplans
might advertise their ability to achieve a particular goal, other metaplans are designed to
wslect the most promising ones to execute first. This decision can be based on which is the
most specialized, whether the planning context satisfies applicability filters of some strategies,
whether certain global goals have been posted (e.g., conserve certain resources, maximize
safety), etc. Metaplans have potential for evaluating the usefulness of a plan and also for
explaining what planning decisions were made and why.

66



6.5.1 Use of metaplans for initial planning

Metaplans ultimately consist of a sequence of steps that are executed in order. Executing
a step might do some fairly interesting things, including invoking the execution of other
metaplans or replacing itself with a sequence of new steps. One step action is simply to fill a
specific slot in a plan-element instance. This first fires constraints in the bias-true evaluation
mode, which ensures that all restrictions applicable in the current context are posted on the
slot. It then obtains a candidate that best satisfies the combined restrictions of the slot.
Finally, after filling the slot with the candidate, it fires constraints again, this time in normal
mode (without side effects). The planner makes use of metaplans that advertise their ability
to plan a particular task. These metaplans consist of little more than a sequence of slot-
filling steps. As long as each step succeeds, the metaplan goes on to execute the next one;
upon failure, it posts a fix-it goal and then continues upon success. For example, there is a
generic plan-task metaplan that advertises its ability to plan any task. It is actually very
limited, since it directly only knows about ESSENTI.L-TASKs and their slots. Planning of
more specific tasks can be accomplished using one of two main alternatives. First, the generic
plan-task metaplan has a "get more steps" step. A planner can write a simple metaplan on
a more specific task that responds to this request and provides the additional steps needed
to plan the specific task. Or, a new plan-task metaplan can be written for the specific task.
This metaplan would be selected over the more general one because of its greater specificity.
Obviously, this type of metaplan Is not particularly intelligent and might not be considered
worthy of the &metaplanning" label. In any event, CAMPS has a need for a planning activity
that is easily fulfilled using the structure and control mechanisms developed to support
metaplanning.

The real problem with using metaplans to specify sequences of slots to fill in order to
plan a task is that this approach has significant limitations. In particular, the fixed ordering
of slots does not work very well in the general case, as discussed in 6.3.2. The best order
depends on the current context. When dealing with time-critical replanning or trying to
satisfy certain types of goals, it may be reasonable to provide an alternative metaplan that
knows a better way (e.g., sequence of slots) to plan a task. But it does not seem reasonable
or very practical to have a different metaplan just because certain slots have already been
filled in an order that is somehow considered to be out of sequence, Currently, the planner
tends to make do with a single metaplan, sometimes relying on an extra constraint or even
backtracking to compensate for this inflexibility. At the same time, we do not envision having
the capability of searching the fifty slots of a certain task to find the best one to fill next,
filling it, and then repeating the process with the remaining slots. It would, however, be
good to use this ability in a more limited manner.

6.5.2 Difficulty of backtracking

General default backtracking in the AMPS domain has not been very successful. Dumb
backtracking is easily implemented, but does not produce very good results. One problem is

* simply that many slots have a very large number of candidates (infinite in some cases) and

67



that the complexity increases very quickly over just a few slots. Remember, that CAMPS'S

constraints try very hard to look ahead and produce good candidates. Consequently, when a
violation does occur, the real cause is typically a value selected several slots previously when
the constraints did not have enough information to make a good choice (or were unwilling
to do the enormous amount of work needed to check all posaible combinations). The desire
is to have a smart backtracker that can back up to the point of the error while still retaining
relevant information that will guide the selection of a better choice. This is related to the
previous paragraph and the problem of determining slot order, which can be based on an
understanding of the relationships (e.g., constraints) between slots. For instance, if we leave
some of the slots that we back up over filled, this will provide the planner with more context
when it selects a new value for the culprit slot. It will, of course, often be totally inappropriate
not to unfill intermediate slots. They may, for example, have been directly determined by
the slot value that we are now changing. The proper analysis of dependencies could provide
us with the needed information.

Most planning failures in CAMPS fall into a relatively small number of categories. Re-
quently, the constraints that are violated are those that have a particularly large number of
slot value arguments. For example, it can be difficult to determine in advance that a particu-
lar resource type is not a very good one to select. It may very well be chosen at a time when
we have not selected values that will tell us exactly how many we need, how long and at what
time we need them, or which suppliers will be in the vicinity of their use. All these values
depend on one another and there is usually no ordering that will avoid potential problems.
The use of some abstraction may help, but provides no guarantee that movement toward
specific values will in fact succeed. The good news, however, is that complicated problems
are often accompanied by a good deal of general or specific knowledge about their nature
and solution. This knowledge can be incorporated Into fix-it metaplans which advertise their
ability to find a solution to a particular type of problem. CAMPS relies on these smart fix-it
metaplans to control most of the backtr-ackng that is performed by the planner.

6.5.3 Controlling alternative fix-it strategies

When the planner knows about more than one strategy for solving a problem, there is an
obvious need to control the process. In general, there should be a way of initially rating
the alternatives and then trying the most promising first. As it turns out, this seems to
be a situation that can benefit from the hypothesizing capability of the planner. One basic
advantage of planning corrective actions hypothetically is that it will no longer be necessary
to restore the original state of a violation when a first attempt to solve the problem fails.
Instead the planner simply switches to another hypothetical world where the original state
of the problem is seen, but where changes dictated by an alternative strategy will affect
only the new world. This also gives us much greater flexibility in the problem solving effort.
When problems are encountered executing one fix-it strategy, we can simply abandon it for
another strategy that now appears to be more promising. If alternatives do not work out,
we still have the option of reentering a world and restai ting an interrupted fix-it. It may
have been suspended before entering a new, more expensive continuation of its basic strategy
which now seems to be worth the try. Or, it may have run into constraint violations and the

68



controlling agenda has now decided that debugging this new error is more promising than
looking for a more direct solution to the original problem. (Note that all fix-it paths will
be controlled by the initial top-level controller. A violation within a fix-it strategy might
spawn several alternative solutions for the new conflict, but these are passed to the existing
controller so that it can continue to rate all of the potential solutions against one another.)
Finally, this approach can be used to show the user the current problem and the results of
alternative efforts at a solution. This interaction can either be at the user's request or when
the system has failed to find a good solution or is unable to decide between alternatives.

Hypotheticals not only support automatic attempts tG flix a conflict, but similarly offer
convenient support to the implementor during debugging. Suppose, for example, we are
trying to get the planner to resolve a certain type of resource allocation conflict which occurs
in a particular scenario after planning ten tasks. Unfortunately, the planner selects what
we consider to be an obviously inferior strategy or perhaps it enters a new fixit metaplan
strategy and breaks into the debugger fairly disasterously. In either case, it may have made
substantial modifications from the original state containing the interesting conflict and it
would be nice if we did not have to recreate the original problem from scratch. In this
example, however, we are lucky because the problem ocurred while the planner was already
in a hypothetical world trying to fix a conflict. All we have to do is abort, reselect the
world containing the original problem and reinvoke the planner. The samne idea can be used
for more general debugging. Before executing something still in need of debugging, simply
switch to a hypothetical world before continuing. Now if the planner breaks or doesn't do
exactly what we want, we can make a chaxge to the code, return to the world possessing the
state of interest, spawn off another world, and then try again, repeating this process as often
as necessary.

6.6 Resource tracking

The availability of resources is the single most important limitation on the CAMPS type of
planner. If sufficient resources (and time) are available, almost any task can be planned
and executed. We have, however, not had much to say about resource tracking simply
because CAMPS handles resource utilisations and pools in much the same manner as other
plan-element instances. There are, however, a few additional operations (and a lot of code)
associated with resource pools as well as some non-slot (ie, not directly controlled by the
user) instance variables in utilizations and pools. One problem with resource tracking is the
need to support many different domains. We therefore have several different basic types of
utilizations and may require more to support the requirements of new domains.

6.0.1 Quantized pools vs. pool sets

CAMPS has two basic types of resource pools. A quantized-pool is the actual owner and
provider of one type of resource. This might be a pool poasessing a single end item (e.g., a
particular aircraft which is tracked individually) or a group of like Items (e.g., a quantity of

69



fuel, or a number of aircraft that are tracked as a group instead of individually). A quantized-
pool knows the type of resource that it possesses, which is normally due to its being defined
in the hierarchy as inheriting properties from the pool instance. (In the terminology of
Symbolics Lisp Machines, a quantized-pool instance is a "mixin" of both the resource type
and the general quantized-pool flavor.) That is, a pool that supplies F-4C may actually be
an instance of F-4C that in turn is built on AC-POOL, or it could be an instance of F-4C-POOL
that is built on both F-4C and AC-POOL. In either case, it knows that it is an instance of
both a type of pool and a type of resource. The normal assigned quantity of the resource is
provided by a number found in a slot of the quantized pool. (There is no pre-assigned name
for this slot that is applicable for all quantized-pools. Instead, the slot is defined using a
DEFRESOURCE-POOL-QUANTITY declaration specifying a (usually general) type of plan-element
and the name of the slot.) The quantized-pool additionally has a non-slot reservations
instance variable that holds its confirmed reservations. Finally, it also maintains a time-
line on the non-slot reservability which shows the quantity of resource available for each
time at which a change occurs. This is simply a reflection of its initial availability and the
reservations that have been made. When a request is made for a reservation, it checks this
time line to verify that it can meet the request during the specified interval. If so, it changes
the utilization's status, adds it to the reservations, and updates the time-line.

A pool-set is another type of pool which in some manner controls quantized-pools for
one or more types of resources. That is, a request to support a utilization often does not
go directly to a quantized-pool. Instead it is passed to a pool-set which in turn passes the
request to a pool that it controls and which possesses the requested type of resource. This
allows the consumer to make a more general request (e.g., for two F-4Cs from a certain
airbase) and gives the pool-set an opportunity to make an intelligent selection of which pool
to task for the request (e.g., a particular squadron at the airbase). The actual quantized-
pools are found, directly or indirectly, by looking in the slots of the pool-set instance. The
DEFRESOURCE-POOLS declaration provides the necessary information which is posted on the
applicable plan-element type. For example, (defresource-pools aircraft air-facility
units) would be used by an airbase to determine that it should look in its :units slot if it
needs to find suppliers of aircraft. In fact, what it finds are units which are themselves only
)pool-sets for aircraft. Therefore, (defrosource-pools aircraft unit aircraft-pools)

is then used to discover the actual quantized-pools for aircraft in the unit's : aircraft-pools
slot.

6.6.2 Types of resource utilizations

A resource utilization is for a quantity of a resource, obtained from a supplier, for use by
a consumer, during an interval of time. All utilizations are instances of the plan-element
type rosource-utilization or one of its refinements. Every utilization has :consumsr,
:resource-type, :quantity, :supplier, :start, and :end slots. The utilization's con-
sumer will normally be a (plan-element instance of a) task which will us& the resource. The
resource-type will be a plan-element type (a structure that is part of the plan-element hierar-
chy) describing the type of resource (e.g., F-16B, ELECTRICAL-NGINR, NOGAS, etc.). The
supplier must be an instance of a. quantized-pool that is able to supply resources of the

70



specified type. The consuming task and the utilization normally share several slots. If the
resource is to be used for the duration of the task, the utilization's start and end time slots
will point remotely to the consumer's start and finish slots. For each resource (e.g., aircraft)
required to support a task, the task will have a separate slot (e.g., :ac-reservation) that
holds the utilization. Additionally, it may have remote slots (e.g., :ac-type, :ac-supplier,
:ac-quantity) that point remotely to the corresponding slots in the utilization.

There are several different types of utilizations. One basic difference is how the start
and end times are determined. The simplest case is when the utilization is for the duration
of the consuming task and the start and end times simply point to the start and finish of
the consumer. These time slots are, however, not necessarily shared. A reservation for a
consumable resource, for example, normally does not expect that resource to be returned.
While the start times might coincide, the end time of the usage may be eternity, effectively
tying up the resource forever. More realistically, the end time should reflect the expected
time of resupply and be capable of later adjustment. In a particular domain, it is not
unreasonable to define a different type of utilization for each major resource category. These
new utilizations may be built on CAMPS utilization types with little or no change. Frequently,
;his is done simply to allow the system to reason about a particular type of utilization and
to specify different database locations for storing different types of utilizations.

There is a more basic difference between types of resource utilization. The original design
for CAMPS envisioned distiguishing between reservations and allocations. A reservation was
to represent a lesser degree of commitment between the user and supplier. In effect, it
simply provided permission to continue planning a task with the expectation that eventual
allocation of required resources could be achieved. The allocation was to represent the firmer
commitment that the utilization could definitely be cupported barring unexpected events
such as maintenance problems. Reservations and allocations are represented by the same
utilization; the difference is in the non-slot status variable which reflects the status of the
utilization (i.e., :incomplete-reservation, :reservation, :allocation). In practice, we have not
made ise of the distinction between the two types of utilizations. The main difference would
be that reservations could be made in an over-booking fashion, where a supplier promises
more than it is actually able to deliver during a certain time interval. This could potentially
support assessing the actual demand for a particular resource. A pool knows about all
of its reservations even if it is over-booked, but it does not have any record of how many
requests it rejected. This Information is, however, only useful if a request is made to a
pool for a good reason. Automatically over-booking may keep the consumer from finding
the same resource or an acceptable replacement at an equally convenient alternative pool.
Currently, the planner make, use of reservations, does not normally allow over-booking, and
consequently does not bother with the final allocation step since there is no real difference.
Perhaps a more appropriate difference would be to make reservations that are at a fairly high
pool-set level to support more abstract planning. These reservations would not be passed
below the pool-set, which would, in effect, act like a quantized-pool that combines all of its
subordinate resources of a general type and tracks them as a group. Later, each reservation
would be converted to an allocation made with a specific quantized-pool and, perhaps, refined
times and quantities. As long as the pool-set has not over-booked, it is likely that most of
the reservations could be converted to specific allocations without serious conflict.

71



6.6.3 Individual vs. group tracking

For some types of resources (e.g., fuel), tracking a large quantity as a group is the natural
approach. Even for individual, major end items, group tracking may still be a reasonable
alternative to tracking each item in an individual pool. In AMPS, for example, we could track
each aircraft individually. This would involve creating an instance of each aircraft which
is also its own individual quantized-pool which will track its activity. If we are concerned
with tracking the maintenance of each aircraft or knowing which pilots and ground crew are
normally assigned to it, then this is really the only approach that works. It is, however,
still possible to track a collection of like aircraft (e.g., all those in a particular squadron)
as a group. This approach does not support tracking at the same level of detail, but it
still is totally consistent. A confirmed reservation with a particular squadron for 4 aircraft
does mean that some four aircraft are scheduled to be available at the requested times. This
method is more efficient when it can be used. The individual aircraft need not be instantiated
or distinguished. The group of aircraft will constitute a quantized-pool with its readily
available time-line that immediately reveals whether a request can be supported. When
tracking individuals, a squadron would be a pool-set that controls many quantized-pools. A
resource request directed to the squadron pool-set would result in a more expensive operation
than the comparable request to the squadron quantized-pool. Obviously, the approach used
should depend on the needs of the domain.

6.7 Hypothetical planning

CAMPS supports the ability to hypothetically explore different planning alternatives. It uses a
coarse, assumption-based approach. At any time, the values seen by the system are consistent
with the current world, which is based on a collection of assumptions. These assumptions
are obtained by selection from previously defined gets of assumptions. Since the assumptions
in a set are mutually exclusiwv, no mote than one assumption from each set is selected to
create a given world. Each world has a tag which represents its assumptions. Similarly, a
slot variable has a tag, and an operation on it and a world tag determines if it is valid in
that world. A variable is actually on a ring of variables representing alternative values valid
in different worlds. Finding a valid variable requires rotating the ring to the proper position
or creating a new alternative variable if aalid wariable is not found. Hypothesizing can be
used to explore alternative plans by both the human user and the metaplannritg system.

6.7.1 Hypothesizing is explicit and assumptions are atomic

Hypothesizing is an explicit action in CAMPS. Making a change in the current world does
not automatically switch to a new world to explore this change. Rather, the default is that
the change is made in the current world and any previous state may be forgotten. The user
or the planning system must explicitly create assumptions, build a world, and then switch to
the world in which the next clange should be valid, and out of the world that should retain
the previous state. Assumptions are also atomic in that they contain no information about

72



the nature of the assumption except a label. It is possible to switch to a world built on an
assumption that "resource X will not be available" and then to promptly select resource X
as the one to use. It is assumed that the planner will take steps to make the current world
"agree" with its assumptions, but there is currently no way of automatically recognizing or
enforcing this. (We could presumably associate with each world a predicate that could check
for a simple condition that is intended to characterize that world.) Also, there need not be
any inherent mutual exclusiveness between two assumptions in the same set. We are simply
stating that anything done by a world making one assumption will not be considered valid
in a world making an alteniative assumption from that set.

6.7.2 Minimizing the creation of alternative variables

The CAMPS approach is oriented toward limiting the number of variables needed to represent
all alternative values in a given slot. Even after extensive hypothesizing has taken place, the
typical slot might still have a single value that is valid in all worlds. Naturally, if some world
other than the NULL world (which makes no assumptions) wants to modify that variable,
then it must be split into a ring with two variables so that only the current world (and
thoe- i-vilt on a valid superset of its assumptions) will see the modification. As it turns out,
the hard thing is not to get the appropriate worlds to believe that the new change is valid,
but is rather. to ensure that they no longer also see the old value as valid. The initial idea
was to add a "splitting assumption" to the tag of the original variable. This would be a
special assumption from a set that possesses an assumption made by the current world. Its
presence would serve to make it contradict the tag in the current world, but leave it valid
in other worlds. Actually, however, it also makes the original variable invalid in any worlds
that make an alternative assumption from the same set that has the splitting assumption.
This motivated us to make a variable's tag a list, in order to reinstate any of the worlds that
made these alternative assumptions. So, a variable is valid if any of its tags Is valid in the
current world.

a..7.S Values that can be hypothetical

All CAMPS slots are represented by CAMPS slot variables and all slot variables support hy-
pothesizing by allowing tags and rings of alternative variables. Yet, it appears that some slots
should have values that are always valid. For example, the off icial-name of a plan-element
instance is a unique identifier and it does not make sense to allow it to vary. Also, consider
a task that has a resource utilization that is created to fill a reservation slot. It makes sense.
that all versions of this task have the same reservation. The actual values (qu atity, supplier,
etc) may vary by world. But there is no reason that there cannot be a single uroservation for
task XW even if it hm many different versions. This at least makes for convenient viewing in
the interface. After displaying the task and reservation in adjacent inspectors, it is possible
to switch among worlds, seeing all v-alid values for the slots of these two plan-elements for
each world.

73

:Bair-



There are also values that should support hypothetical alternatives but are not CAMPS
slots. A resource pool, for instance, maintains a list of all reservations as well as an availability
time line representing these reservations. These are not slots since they are not directly
modifiable by the planner. Yet, it is clewrly necessary for a reeource pool to recognize that
some of its reservations are hypothetical and not in 44;re comptition with others for the
available resources. CAMPS slots are already filled with vaxiables which contain the value of
the slot along with about 15 other types of information. Adding a validity tag and also a
pointer to a ring of alternative variabler for this slot was a simple matter. Non-slot values,
however, are represented by flavor instance variables that are set directly to a value. In order
to install a hypothetical ca pability on some of these values, we allow the instance variable to
be set to an HVAR (hypothetical vadiable) that holds the value as wall as tag and ring data
that support hypothesizing. There )are currently no declarations that add a hypothesizing
caoability to such an instance variable. Rather, all parts of the code that access such a
variable are. required to use a sma1l set of special macros in dealing with the variable. An
HVAR is not even created until some operation requires the splitting of the current value to
support hypothetical alternatives.

Since most of a constraint's arguments are slot variables, hypotheticals also affect con.
straint instances. Copying constraints is one of the more expensive aspects of splitting a
variable. Consistency in handling constrai•ts was also the hardest part of the implementa-
tion. Lost constraints often were the cause of many planning problems wl e hypothesizing.
One example of the problewn occurs when a slot is restricted during constraint evaluation.
A restriction constitutes a modification that may be valid only in the current world and
therefore may require the variable to split. Thi meias that in the middle o-f a nmeit rint
evaluation, an argument of the constraint becomes invalid which mean; thal the constraint
itself is no longer valid. Our technique, when a wkfiii rolits, is #imply to give it a copy
of the list of constraints on the old variable. Then at constraint firing time, a c ns'tralnt is
checked for validity by checking that its posted twriables axe aJl v;aid in the cunuxet world,
If not, a valid constraint (having valid arguments) is either found on the constraiat's ring or
a new one is created and added to the ring.

6.7.4 Building worlds on top of other worlds

In a typical application of hypotheticals, the twear may ko plA4ning in the NULL world
and desire to explore two alternative continuations. Suppose we build SOMEC-1 (a .'set of
mutually exclusive choices") containing .nulptiwrms 1A and lB. Using these we can build
world WIA (making only assumption IA ftom SOMEC-1) and world WIB. Iitially each of
these new worlds will see the entire stae th.t is 4V-i'd iz Ghe NULL world (W0). But as new
values are wt wuithin these new worldts, z-me vw•alries might split to that they have different
values in Wo, WItA, and W1B. It makes n. to try out different %ralues in WIA and WIB
for some slot that was not set in WO world. But, what about giving a new value to a slot in
WIA whih wm mreidy set to z different value in WO. This is in fact legal in our system
and would result in that slot having two alternative variables. One would have the new value
and be valid ia WIA while the other would retain the old value and be valid in both WIlB
and WO.

74



Now, suppose we wish to explore two additional continuations from the current state in

W1A. We could create SOMEC-2 with assumptfins 2A and 2B, build worlds W1A2A and
W1A2B, and then make various changes in them so that they differ from WiA and one
another. We are now faced with the question of what should happen if we switch back to
WiA and set a variable that has been set in W1A2A or W1A2B. C:, -,at effect should
making a change back in WO have on worlds WIA, WiB, W1A2A, and WlA2B? Some
users think that these actions should be illegal or that a change made in WiA should not
be automatically valid in W1A2A or W1A2B. In any event, our implementation forces a
change made in one world to be initially valid in all worlds that are built on a superset of the
assumptions made by the world making the modification. For example, changing a variable
in WO will make it valid in all worlds (since all worlds make at least all the assumptions
made by WO, which actually makes no assumption). In fact, the ring of variables would be
coll.psed into a single variable seen by all worlds. It is even possible that this change would
supersede an assumption on which a subworld was originally based. Other worlds would,
of course, be free to again make changes and split off from the NULL world. We also have
the possibility that a particular value valid in world W1A2B could have several potential
justifikations. It may have been most recently set in WlA2B or WIA or W2B or WO. In any
case, it will see the most recent change. Most users who disagree with this implementation
would simply prefer that these "conulicts' be illegal. Fortunately, it is a simple matter to
avoid them altogether.

0.7.5 Using hypotheticals for contingency plans

Hypothesizing can be used to explore alternative planas by both the human user and the
metaplanning system. An additional tsue might be the creation of contingency plans. It
is possible to create various alternatives for -ech of several plans. Once the planning is
done, the system can sit ba,-k and monitor external changes. As these changes match some
contingencies, it is possible to qttickly select a new world consisting of the old assumptions
that axe still valid and the contingency assumptions that have just become true. This world
would, ideally, once again consist solely of valid plans.

Consider the following example using the nomenclature of the previous section. Suppose
t en different tasks Lave been planned for execution on the following day. For earch of these
tasks, we might explore various things that are likely to go wrong and make hypothetical
changes that would respond to these problems. Most of the contingencies would probably
address changes of conditions between now and the start of execution. Some might consider
changes that occur during the execution. Suppose we create SOMEC-1 with assumptions
1A, 1B, and IC. Each assumption would assume a particular problem with task-l. The
assumptions would either be mutually exclusive or we may just be making a practical as-
sumption that at most one of these problems will occur. If necessary, we could use more than
one SOMEC for this task. Similary, we might produce a SOMEC for each other task with
a few assumptions of various problems that could affect it. For each predicted problem, we
could then build a single world, based on a single assumption, and hypothetically plan out a
solution to that problem.



At some pohA, information might be received indicating tLh.t the probiems corresponding
to assumptions 1A, 3C, 7A, and 8D have occured. Even for this relatively simiple example,
it is obvious that the number of potentia' combinations of problems is very large. Yet, v.ye
need only pop up a menu and build .t new world WIA3C7A8D in order to view the current
situation. In an ideal case, we will actu,.Uy see valid changes .tOat address the four reported
problems and will need only to disseminate ýhe newest versions of these plans. Naturally,
this is probably a very simplistic approach to a difficult problem, but we think that it has
potential to at least give us a quick start at replanning in response to the new conditions.
There may of course be some conflicts between the various hypothetical solutions. An obvious
example would occur if contingencies for several Tasks all relied upon a single reserve pool
of resources. If too many of these condiC.•,)ns were invoked, the pool could be exhausted.
However, this would be represented in the new world by the presence of a resource violation.
It would therefore be addressable using normal replanning employing standard resource fib:-it
metaplanning.

76



'7 The Future of CAMPS as a Tool

The CAMPS architecture is a computer-based Al planning tool that is intended for use in
constructing (and, more importantly, modifying) a plan. We intend to develop the CAMPS

system with its documentation suite (papers, tutorials, manuals) into a form which develop-
ers, other than MITRE will want to use. The resulting tool should have a clean and dearly
described architecture, be as dose as possible to commercial tools, be readily usable, portable
and readily modifiable and extendable in ways in which extenders can readily add their own
ideas.

CAMPS is currently equipped with an extensive number of development and debugging
tools. Most of these tools enable the user to create, modify, or examine plan elements and
their slot contents. Many tools are available throughout the system. While some tools are
capability-dependent (database, gantt, plan element), other tools are consistently available,
e.g., "inspect-random-thing" which enables the user to view any object selected in the Lisp
Machine Inspector Mode. In the following subsections of this section we provide a sampling of
how we intend to extend CAMPS' architectural elements to provide a still better development
tool.

7.1 Plan Element Hierarchy

The plan element hierarchy is a concept hierarchy consisting of general CAM PS concept capa-
bilities, e.g., essential-task, essential-resource-pool and domain-specific concepts e.g., SAM-
site, orbiter-vehicle. A plan element hierarchy tool currently exiscs which enables I he user
to graphically view concept elements and AKO relations among these concept elements. As
the plan element hierarchy can be very large (larger than a display screen), we have pro-
vided a scrolling capability which enables the user to explore the hierarchy by panning over
a compressed image of the hierarchy. The user can reduce the complexity of the hierarchy
by specifying a node from which a hierarchy can be generated. Obviously, the lower in the
plan element hierarchy the elemert is which was specified, the less information will be dis-
played. This is very useful, since the hierarchy can be very dense in parts, making it virtually
impossible to visually discern relations (represented as lines) between concepts.

For each concept in the hierarchy, the user can get information on what the concept
represents. The user can also access the declarative code for any plan element concept
through the plan element hierarchy.

Commercial tools (shells) typically provide graphical concept hierarchy tools. We would
like to examine the capability provided by these tools in commercial products and modify
our existing technique with some of these capabilities. While our use of the plan element
hierarchy is typically for validating the declarations of links between plan element concepts,
we would like to extend the plan element hierarchy tool to be an instrument for "creating"
the plan element hierarchy as well.

77



7.2 Database Tools

The database is the repository of domain specific information. The database contains in-
formation which defines the instances of the concepts defined in the plan element hierarchy.
For example, "orbiter-vehicle" is defined in the plan element hierarchy, but "discovery," "at-
lantis", and other space shuttle orbiter-vehicles are defined in the database. As objects in
the environment change (new orbiter vehicles are built), these can be incorporated into the
database without impacting the concept plan element hierarchy. However, when new con-
cepts are encountered (heavy launch vehicles for space station) or when old concepts change,
theh the plan element hierarchy will need to change also.

During the initial development of a application system, developers and knowledge engi-
neers tend to make extensive changes to the database and to the plan element hierarchy,
e.g., in the specification of tasks and resources. Existing CAM. tools enable the developer
to examine relations and individual tuples in relations. Relational database information is
generally presented to the user in the form of tables. The user is provided with a scrolling
capability for examining relations. Since some relations are very large (have many tuples,
and/or, have many relation attributes) several filtering tools have been developed which
enable the user to: suppress the display of relation attributes, specify search restrictions to
reduce the displayable content of the relation table, etc. Tools are provided which a so onable
the user to add a tuple, modify values, and find hierarchy references.

In our development of AMPS and EMPRESS-Il, we tended to develop database relations
in the Lisp Machine Editor and to view and test usage of relational database information
within the CAMPS environment, particularly in the "database configure" mode. We would
like to extend our current database tools to enable the user to buih1 and/or modify database
relations within the system environment. While some capabilities are currently available to
support this, e.g., modify-value, they have, for the most part, not been used, remaining largly
untested.

7.3 Metaplans, Constraints, Rules, and Predicates

CAMPS tools currently exist for getting lists of existing CAMPS and domain-specific metaplans,
constraints, rules and predicates; and for modifying these items. For each of these items, the
system will provide access to summaries of what the item Is supposed to do, as well as an
access method for viewing or modifying it in the Lisp Machine Editor.

We would like to provide tools w.hich support the developer, knowledge engineer, and
user in the construction of metaplans, constraints, rules and predicates. Currently, much of
this is performed in the Lisp Machine Editor support through analogy with existing items.
We would like to develop tools which directly support these operations, and we would like
to present these tools to the user as part of the CAMPS developer interface.

78



7.4 CAMPS Interface Tools

When a user instantiates something from the database, or when the user creates a new object,
the result can be viewed in the current CAMPS interface through the Plan Element Inspector
Windows (which populate several CAMPS configurations). When a plan element has been
instantiated, the user can view the current values for each slot; the existing constraints for
each slot of the plan element, or for the entire plan element; justification and summaries for
each slot which inform the user of who set the slot, and wlere the slot information is stored
(usually a location in the relational database), as well as of other debugging utilities, e.g.,
examine-slot-restrictions. The plan element inspector windows are also an excellent environ-
ment in which to evaluate the relationship of plan element slots with other slots (e.g., indirect
slots), and for studying the effects on constraint checking. CAMPS currently backlights slots
or slot values which are involved in constraint violations, and provides information about
constraint violations through menu items such as slot-constraint-sitmmary..

CAMPS is currently equipped with tools for creating new configiations and for modifying
current configurations. Some of these tools are declarative. We would like to support the
declarative mode of configuration design as much as possible, building on the CAMPS kernal
display mediums which support the generation of: tables, graphics, inspector windows, and
the Lisp Machine Listener interaction capabilities.

Extension to some tools is very easy, and some may even be performed within the CAMPS

interface. We feel that we have provided the basic tools required for a planning, schedul-
ing and resource allocation environment. These tools include: display tools such as task-
subtask displays (both tabular aaid graphical), pert-charts, histograms, forms, tables, and
gantt charts, as well as planning mechanisms such as resource tracking, task template, update
notifica.ion, and hypothetial worlds.

Finally, since CAMPS is primarily oriented toward the development of planning systems,
we feel that it should support, and be judged by its support of the following (see [5] for
details):

Plan Quality. If the planning problem can be solved, the tool should be able to find
the solution. Furthermore, elements, such as resources should be used "wisely." The
promise of Al is that "wisdom" can be encoded and used by a computer program.
However, optimality is frequently a chimera; flexibility may be more important than
efficiency.

Replanning. Plans change. They are refined, ipdated, adapted, and modified. Re-
planning is similar to planning, but different in that in replanning a planner may make
choices so as to minimize the resultant perturbations of the original plan. The tool
must be able to support all aspects of the planning cycle.

Ability to Plan with Incomplete and Inconsistent Information. We never know enough.
Tools must be able to "guess," and distinguish guesses from data. Similarly, the sys-
tem must be able to distinguish between being ignorant and being confused. Finally,

79



any limitation on the user's ability to produce inconsistent plans should be imposed
externally, and should not reflect any inherent limitation of the system to operate in
the presence of inconsistency.

* Ezplanation of Result. A "plan" that cannot be explained should not be trusted. A
system that cannot explain why decisions were made should also not be trusted. Even
less trustworthy is a system that doesn't know what decisions were made. A "plan" is
derived and modified by some process. That process itself is subject to question (e.g.,
"Did you take co-located hazardous operations into account?") and thus must be open
to examination and explanation.

e Dynamic Interoperability. Planning is never done in isolation, so a tool to support
planning must exchange information with other tools supporting other activity. It must
both announce its own results (subject to security considerations), and constantly listen
to external activity.[5]

80



i References

(1] Carol A. Broverman and W. Bruce Croft. Reasoning about exceptions during plan
execution. In Proceedings of the Sixth National Conference on Artificial Intelligence,
pages 190-195, Seattle, Washington, 1987.

[2] R. Brown and A. Schafer. Relational database utilization by the camps knowledge-
based planning architecture: Performance implications. Technical report, The MITRE
Corporation, Bedford, Massachusetts, 1987.

[3] R. H. Brown. Agendas: A meta-planning mechanism. Technical Report Corporation
M85-26, The MITRE Corporation, Bedford, Massachusetts, 1985.

[4] R. H. Brown, J. K. Millen, and E. A. Scarl. KNOBS: The final report (1982). Technical
Report M86-20, The MITRE Corporation, Bedford, Massachusetts, April 1986.

[5] Richard Brown. A solution to the mission planning problem. In Proceedings of the
Second Aerospace Applications of Artificial Intelligence, Dayton, Ohio, October 1986.

[6] Richard Brown. Knowledge-based scheduling and resource allocation in the camps archi-
tecture. In M. Oliff, editor, International Conference on Expert Systems and the Leading
Edge in Production Planning and Control, Menlo Park, CA, 1987. Benjamin/Cummings.

[7] Richard H. Brown. Allocation of resources in the knowledge-based planning architecture
camps. Technical Report M-Series M87-63, The MITRE Corporation, December 1987.

[8] B. Chandrasekaran. Generic tasks in knowledge-based reasoning: High-level building
blocks for expert system design. IEEE Expert, 1(3):23-30, Fall 1986.

[91 David Chapman. Planning for conjunctive goals. Artificial Intelligence, 52:333-377,
1987.

[10] David Chapman and Philip E. Agre. Abstract reasoning as emergent from concrete
activity. In M. P. Georgeff and A. L. Lansky, editors, Reasoning About Actions and
Plans, Proceedings of the 1986 Workshop at Timberline, Oregon, 1987.

[11] Randall Davis. Applications of meta-level knowledge to the construction, maintenance,
and use of large knowledge bases. PhD thesis, Computer Science Department, Stanford
University, 1976. Reprinted in R. Davis and D. B. Lenat (Eds.), Knowledge-Based
Systems in Artificial Intelligence, New York: McGraw-Hill, 1982.

[12] Randall Davis. Meta-rules: Reasoning about control. Artificial Intelligence, 't5(3):179-
222, 1980.

[13] B. C. Dawson, R. H. Brown, C. E. Kalish, and S. Goldkind. Knowledge based replanning
system (krs) final report. Technical Report M87-49, The MITRE Corporatiort, Bedford,
Massachusetts, May 1987.

[14] David S. Day. Achieving Flexibility for Autonomous Agents in Dynamic Environments.
PhD thesis, Department of Computer and Information Science, University of Mas-
sachusetts, Amherst, Mass., 1990. In preparation.

81



[15] Rina Dechter and Judea Pearl. Network-based heuristics for constraint-satisfaction prob-
lems. Artificial Intelligence, 34:1-38, 1988.

[16] J. DeKleer. An assumption-based tins. Artificial Intelligence, pages 127-162, 1986.

[17] R. E. Fikes. REF-ARF: a system for solving problems stated as procedures. Artificial
Intelligence, 1:127-120, 1970.

[18] Mark S. Fox. Constraint-Directed Search: A Case Study of Job-Shop Scheduling.
PhD thesis, Carnegie-Mellon University, Computer Science Department, Pittsburgh,
PA 15213, 1983.

[19] Mark S. Fox, Brad Allen, and Gary Strohm. Job shop scheduling: An investigation in
constraint-directed reasoning. In Proceedings of the AAAI-82, 1982.

[20] G. Frekany, M. Imura, P. Lipinski, R. Little, B. Press, L Severin, C Siska, and Z Zayan.
Functional description (final) technical expert mission planner (TEMPLAR). Technical
Report CDRL A006, TRW Defense Systems Group, Systexas Engineering and Develop-
ment Division, March 1987.

[21] K. Fukumori. Fundamental scheme for train scheduling. Al Memo 596, Massachsetts
Institute of Technology, Cambridge, Massachusetts, 1980.

[22] Michael Georgeff and Francois Felix Ingrand. Decision-making in an embedded reasoning
system. In Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pages 972-978, Detroit, Michigan, 1989.

[23] 1. P. Goldstein and R. B. Robert. NUDGE: A knowledge-based scheduling program. Al
Memo 405, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1977.

[24] T. R. Gruber and P. R. Cohen. Knowlec'ge engineering tools at the architecture level.
In Proceedings of the Tenth International Joint Conference on Artificial Intelligence,
Milan, Italy, August 1987.

[25] G. B. Hankins, J. W. Jordan, J. L. Katz, A. M. Mulvehill, J. N. Dumoulin, and J. Ra-
gusa. EMPRESS: Expert mission planning and re-planning scheduling system. In Expert
Systems in Government Symposium, 1985.

[26] D. Krieger and R. Brown. Trimodal interpretation of constraints for planning. In
Proceedings of the SOAR Workshop. Sponsored by NASA and ASC, August 1987.

[271 T. J. Laffey, P. A. Cox, J. L. Schmidt, S. M. Kao, and J. Y. Read. Real-time knowledge-
based systems. AI Magazine, 9:27-45, 1988.

[28] Victor R. Lesser, Edmund H. Durfee, and Jasmina Pavlin. Approximate processing in
real-time problem solving. AI Magazine, pages 49-61, Spring 1988.

[29] Alan K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:99-
118, 1977.

[30] D. McDermott. Planning and acting. Cognitive Science, 2:71-100, 1978.

82



[31] Alice M. Mulvehill. The evolution of a knowledge base. Technical Report M88-45, The
MITRE Corporation, October 1988.

[32] James H. Patterson. A comparision of exact approaches for solving the Multiple Con-
strained Resource, Project Scheduling Problem. Management Science, pages 854-867,
1984.

[33] E. D. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence,
5(2):115-135, September 1974.

[341 E.D. Sacerdoti. A Structure for Plans and Behavior. American Elsevier: New York,
NY, 1975.

[35] M. J. Stefik. Planning with Constraints. PhD thesis, Stanford University, Stanford,
California, 1980. Also available as Stanford Computer Science Tech. Report 80-784.

[36] Mark Stefik. Planning with constraints: MOLGEN Part I. Artificial Intelligence, 16(2),
1981.

337] J. P. Stinson, E. W. Davis, and B. M. Basheer. Multiple resource-constrained scheduling
using branch and bound. AIIE Transactions, pages 252-259, September 1978.

[38] G. J. Sussman. A Computer Model of Skill Acquisition. American Elsevier, New York,
NY, 1975.

[39] Austin Tate. INTERPLAN: A plan generation system that can deal with interactions
between goals. Machine Intelligence Research Unit Memo MIP-1-109, University of
Edinburgh, Edinburgh, December 1974.

[40] D. Waltz. Generating semantic descriptions from drawings of scenes with shadows. In
Patrick Winston, editor, The Psychology of Computer Vision, pages 19-92. McGiaw-
Hill, New York, 1975.

[41] Robert Wilensky. Meta-planning. In Proceedings of the First Annual National Con-
ference on Artificial Intelligence, pages 334-336. Morgan Kaufmann Publishers, Inc.,
1980.

[421 Robert Wilensky. Planning and Understanding: A Computational Approach to Human
Reasoning. Addison-Wesley, Reading, Massachusetts, 1983.

[43] David E. Wilkins. Domain-independent planning: Representation and plan generation.
Artificial Intelligence, 22:269-301, 1984.

(44] David E. Wilkins. Recovering from execution errors in SIPE. Technical Note 346,
Computer Science and Technology Center, Computer Science and Technology Center,
SRI International, 1985.

[45] Monte Zweben. CAMPS: A dynamic re-planning system. Technical report, The MITRE
Corporation, 1986.

83



A Filter-trees and Evidence Combination in CAMPS

This appendix discusses in more detail the filter-tree data structure in the CAMPS architecture
and its use. The discussion is more detailed, especially with respect to the nature of the
implementation, than would be appropriate in the body of the text above. This section
assumes that the reader has already read Section 4, especially Section 4.4.

A.1 The Generator Filter-Tree

A generator uses a filter-tree to represent all of the restrictions imposed on its candidates. A
filter-tree potentially has five different types of nodes. Each tree has a single top filter-tree
node (TOFTN) which serves as the root. A constraint filter-tree node (COFTN) always
has the TOFTN as its parent. It represents a particular constraint instance which has
imposed one or more restrictions on this slot during its evaluation. A COFTN always has a
predicate filter-tree node (PRFTN) as a child. The PRFTN represents the actual predicate-
expression that serves as the constraiat's predicate. Its children represent the predicate's
means of evaluation. In the simplest case, the predicate might have a hand- coded or database
evaluation path. Such a direct evaluation is represented by the filter filter-tree node (FIFTN).
This contains the actual low-level filter that takes a candidate and returns a belief and
disbelief. A PRFTN might also be rule-based, in which case it would have a child that is
a rule filter-tree node (RUFTN). This RUFTN would itself have one PRFTN child for each
rule antecedent that leads to a restriction on this same slot. Its leaf nodes, possibly reached
after a series of PRFTN and RUFTN, would be FIFTN that represent direct evaluations.

Constraint evaluation leads to belief values at several different levels. Direct values are
returned only by hand-coded and database evaluation paths and are the basis for all other
belief values; a rule-based evaluateion path returns beliefs partly based on a conjunctive com-
bination of the individual antecedent results; a predicate returns a belief that is a combination
of the disjunctive evaluation paths that support it; a constraint returns a result based partly
on the beliefs in its predicate and also the combined beliefs in any constraint conditions
(also predicates). In addition, both rules and constraints have other fixed weights that in-
fluence their results. Th. overall belief that a constraint violation exists involves the proper
combinatioi of all intermediate evaluation results. During this evaluation, many restriction
messages may be sent to various slot generators. When a generator selects a candidate it
must obtain an overall evaluation using evidence combination in a manner similar to that
employed to obtain an overall constraint result.

A.2 Evidence Combination in CAMPS

The FIFTN's filter is the only object in the filter-tree that directly tests the generator's
candidates and returns a belief and disbelief. For an exact understanding of what might
happen to these values, it is necessary to take a detailed look at evidence combination in
CAMPS. While the intent is to understand evidence combination within slot generators, most

84



of the details that follow also apply to evidence combination used to determine constraint
violation or satisfaction. There are, however, some important basic differences.

Constraint evaluation:

1. Belief refers to belief that a violation exists.

2. Belief is based on all evaluations triggered by one constraint. Typically, these evalua-
tions involve values found in many different slots.

3. Belief is used to determine whether a particular constraint is violated. The final con-
straint belief in no way'reflects beliefs derived by other constraints. It does not even
represent all the fixed weights on the specific constraint.

Slot candidate evaluation:

1. Belief refers to belief that a candidate for one slot is an acceptable value (and will not
cause a violation).

2. Belief is based on all restrictions imposed on one slot. Typically, these restrictions may
be triggered by the evaluations of many different constraints.

3. Belief is based on an appropriate combination of beliefs contributed by al! constraints
that restrict the generator.

SEvidence combination definitions.

Each belief and disbelief in CAMPS is a value found in the inclusive interval 0 to 1. The
sum of belief and disbelief must not exceed 1. Any amount by which the sum is less than 1
is assigned to uncertainty.

DS-COKBINE, taken from Dempster-Shafer, is used to combine evidence believed to be
essentially disjunctive. For two belief/disbelief pairs (B0 DO) and (B2 D2), the DS-COIWINE
results are:

Combined belie• = 1 - (1 - B1)(1 - B2)/(1 - (BID2 + B2D1)),

CombineQ diribolief 1 - (I - D1)(1 - D2)/(1 - (BID2 + B2D1)).

-.4

t8



A.2.1 Evidence combination starts with direct evaluations

In CAMPS, there are three ways in which a predicate might be evaluated. Two of these
directly return belief and disbelief values. These are the simplest evaluation beliefs, based
solely on direct evaluations. CAMPS supports hand-coded evaluations for about 40 different
predicates. These are predicates that are domain independent and are evaluated by passing
arguments (normally slot variables) to LISP functions. They enforce mostly arithmetical
relationships or those specified by basic operations on CAMPS PLAN-ELEMENT structures
and instances. The belief and disbelief can be any legal combination returned by the function.
For example, the *GRFA1TER* predicate returns (1.0 0.0) or (0.0 1.0) when testing fixed
values, since the existence of the desired relationship can be determined with no doubt. The
*FUZZY-EQUALS* predicate returns varying belief based on how close two values are to each
other and the size of the delta argument. If some of the arguments to a hand-coded predicate
are from slots that have not yet been fixed, an answer of (0.0 0.0) might be appropriate.

Predicates can also be directly evaluated by using a dbpredicate that tests the relational
database. A constraint writer could ensure that the selected unit is at the selected airbase by
declaring an airbase-unit database predicate. This would simply point to a cei'tain relation
and insist that the (external representation) of the values filling the airbase slot and the
unit slot must both be found in designated attribute positions in at least one common tuple
of that relation. A dbpredicate returns beliefs based on the presence or absence of values
in a relation, with the exact values depending on the dbpredicate's belief and cbelief
weights. The belief represents confidence that the predicate is true given that the proper
combination of values has been found in a relation. It is the belief that the database is
accurate and also appropriate for testing the predicate. The cbelief represents confidence
that the predicate is false if the appropriate values are not found. It is the belief that the
data is accurate and complete. Normally, the resulting belief from a dbpredicate is (BELIEF
0.0) for a match and (0.0 CBELIEF) otherwise.

A.2.2 Evidence combination and rule evaluation

The third potential evaluation means for a predicate uses rules. A rule evaluation returns a
belief and disbelief based on the evaluation of its antecedents and the beliefs in the rule itself.
Each antecedent is itself a predicate, so the beliefs that it contributes to the rule evaluation
are ultimately derived from direct hand-coded or dbpredicate results, possibly first passing
through other rules. The antecedents are considered to be conjunctive. The evaluation
result of each antecedent predicate is combined with the others by minimizing belief and
maximizing disbelief that no problem exists (i.e: that a candidate should be selected by a
generator or that a constraint is satisfied). This result is the overall belief and disbelief in
the rule's antecedent. The final overall rule belief in the predicate (the rule's consequence)
is obtained by combining the antecedent result with four fixed rule -alues.

The Belief in a rule P => Q provides the degree to which Q is believed given that P is
true. The Disbelief value for P => Q provides the degree to which Q is disbelieved given
that P is true; disbelief is equivalent to belief in P => NOTQ. If these do not sum to unity,

86



then the difference represents uncertainty in P => Q, meaning that no conclusion should
be made about Q if P is true. It represents a lack of both belief and disbelief in Q. The
CBelief in P => Q provides belief in NOTP => NOTQ. The CDisbelief in P => Q
provides belief in NOTP => Q. Normally, at least one of the Belief and Disbelief values
should be zero, as well as at least one of CBelief and CDisbelief. (Simultaneous belief and
disbelief is supported, but its meaning is somewhat unclear.)

These rule weights provide power and flexibility in writing appropriate rules. They are
combined with the antecedent result by using DS-combine for the belief pairs (BI DI) and
(B2 D2) where:

* B1 = antecedent Baliof * rule Belief (i.e., belief is belief in the antecedent times
belief that the consequent should be believed given that the antecedent is true),

* DI = antecedent Belief * rule Disbelief (i.e., disbelief is belief in the antecedent
times belief that the consequent should be disbelieved given that the antecedent is
true),

* B2 = antecedent Disbelief * rule CDisbelief (i.e., belief is disbelief in the antecedent
times disbelief that the consequent should be disbelieved given that the antecedent is
false),

* D2 = antecedent Disbelief * rule CBelief (i.e., disbelief is disbelief in the antecedent
times belief that the consequent should be disbelieved given that the antecedent is
false).

Note that the following rules can potentially confirm Q:

1. A rule with Q as its consequence and Belief > Diabelief.

2. A rule with NOTQ as its consequence and CBelief > COinbelief. CBelief in P =>
NOTQ means Belief in NOTP => Q.

3. A rule with NOTQ as its consequence and Disbelxaf > Belief. Disbelief in P =>
NOTQ means Belief in P => Q.

4. A rule with Q as its consequent and CDisbelief > CBelief. CDisbelief in P => Q
means CBelief in P => NOTQ means Belief in NOTP => Q.

The following rules can potentially disconfirm Q:

1. A rule with NOTQ as its consequence and a Belief > Disbelief.

2. A iule with Q as its consequence and CBelief > CDisbelief. C3elief in P =-> Q
means Belief in NOTP => NOTQ.

87



3. A rule with Q as its consequent and Disbelief > Belief. Disbelief in P => Q
means a belief in P => NOTQ.

4. A rule with NOTQ as its consequence and CDisbelief > CBelief. CDisbelief in
P => NOTQ means CBelief in P => Q means Belief in NOTP => NOTQ.

We could do away With negated consequences and just use Disbelief. But negated
consequences seem the more natural way to think about it. We could also do away with non-
zero disbelief. Negated consequences could do the job, except for the possibility of having
both belief and disbelief in the same rule, a capability that we are probably better off not
having.

A.2.3 Evidence combination and predicate evaluation

A given predicate expression has one or more evaluation means. It may be supported by a
hand-coded path, a DBpredicate, and/or one or more rules which contain the predicate in
the rule's consequence. These evaluations are discussed above. When a predicate expression
has more than one evaluation means available, each is considered to provide beliefs that are
disjunctive. The overall belief in the predicate is obtained by combining the result of each
evaluated path using DS- combine.

A.2.4 Evidence combination and constraint evaluation

A CAMPS constraint is enforced by a predicate expression. It may additionally have applica-
bility conditions (zero or more predicate expressions), and it also has various fixed weights.
These 4I contribute to the final constraint beliefs. If a constraint has no conditions (that is,
no predicates are specified in the condition slot of the constraint), the result of testing the
condition defaults to absolute belief t,-t the constraint is applicable. When it has oee or
more conditions, the predicate of each conditions is evaluated in normal mode (with no side
effects). (It would normally be undesirable to post restrictions in order to make -, constraint
applicable or not applicable. An exception is in the aase-true context. One of the ways
of correcting a constraint violation might be to post a restriction which forces the violated
constraint to become inapplicable.) Each condition is considered to provide conjunctive be-
lief in the applicability of the constraint. Each condition predicate result if. combined by
minimizing belief and maximizing disbelief in applicability. However, currently the belief in
the final condition is then supplemented by transferring to it all of the uncertainty. So the
final condition's belief is the result of subtracting the final condition's disbelief from 1.

If the conditions have been atisfied, the constraint predicate is evaluated in bias-f alis
(failure motivating) mode, since it tests for the presence of problems which we wish to avoid.
This results in overall belief and disbelief values for the predicate. The constraint also has a
fixed belief associated with it. The constraint belief value represents the belief that there
is in fact a violation given that the conditions and predicate are true. The final constraint
beliefs are:

88



Constraint Belief - Predicate BConditions BConstraint),
Constraint Disbelief a (* DPredicate BConditions BConstraint),

where BPredicate and DPredicate are the belief and disbelief of the constraint predicate,
BConditions is the overall belief in the constraint conditions, and BConstraint is the con-
straint's fixed belief value. The resulting overall constraint values are the belief and disbelief
that a constraint violation exists.

Within a generator, the overall candidate belief, contributed by a constraint, is calculated
somewhat differently. As always, the orientation is shifted from belief that a violation exists
to belief that a candidate would be aczceptable if selected. The calculation of the overall
constraint contribution also considers a few additional components. These are the constraint's
endorument value and its com.m•ence-category. The endorsement is a fixed value that
represents the belief that a value is good if it passes the restrictions imposed by a constraint
predicate. This- coiuplements the constraint's fixed BELIEF value which represents belief
that a i4,Jca- is bad if it fails a restriction posted by a constraint. The consequence-category
(one of :f as"ible, : survival, :success, : of ficioncy, or : assumption) provides weights
that reflect the relative importance of the constraint. The final beliefs by the constraint in
the acceptability of a candidate are:

Constraint Belief - (* BValue BConditions EConstraint "Mleight),
Constraiut Disbelief a (* DValua BConditiona BConstraint DWMight),

where BValue and DValue are the belief and disbelief provided by the constraint predicate,
BConditions is the overall belief in the constraint conditions, EConstraint and BConstraint
are the constraint's fixed endorsement and belief values, ?ad BWMight and MWeight are the
weights asso•ciated with the constraint's consequence- category.

A.2.5 Evidence Combination and Overall Candidate Evaluation

When caps fires constraints (e.g., al those on a particilar slot), it does not try to calcu-
late an overall combined constraint violation or satisfaction belief. It %s interested only in
individual constraint violations based on the final constraint beliefs in a violation. (It dows
additionally consider a violated constraint's efficiency-category to determine how serious the
violation is.) Within a slot generator, however, it is necessary to obtain an overal ratixg for
a candidate based on all restrictions inposed on the slot regardless of source. The current
method of combining constraint beliefs in a candidate is simply to use, DS-COMBINE. This
choice may appear flawed on the grounds that constraints are normally considered as con-
junctive and not disjunctive evaluations. Many other schemes were considered and eventually
rejected. The use of DS-CONBINE appears to work well if certain guidelines are followed in
the selection of varius constraint weighting factors.

The ca..equence-categorj can be used to ensure that an important failure will not be
masked by raimportant successes. With an appropriate consequence-category, high belief in



a value, stemming from a constraint with a weak consequence, will be sufficiently weakened
so as to have only a small effect on disbelief in a value that is derived from a more important
constraint. As a result, two candidates that each fail an important constraint may have
slightly different overall values if one scores better with the unimportant constraints, but
each result should still be failing.

Assignment of reasonable endorsement and belief weights will prevent the masking of
an important failure by the satisfaction of several other constraints that also have high
consequence-categories. A constraint that checks for a serious constraint violation typically
might have a high belief value, but it should definitely have a low (probably zero) endorsement
value. (There are no brownie points if the left wing is securely attached; just big trouble if it
is not.) In this scheme, an important constraint with a high endorsement must be one that
would tend to overcome other important (and probably unrelated) constraint violations (sort
of an "If God is actively ou our side, nothing else matters" constraint). There are relatively
few such constraints in most CAMPS domah.s. Most exceptions fall into the category of
endorsing values that must be so by definition. For example, all reserývations have a quantity
slot. A reservation for an airrraft SL might absolutely endorse a value of 1, simply becaase
we def ne the SCL as including the entire configuration for an aircraft. For compatibility
reasons, it is convenlent to enforce this using a constraint and a standard reservation.

A.3 Filter-Tree Examples

The SHOW-FILTER-TREE function allows the user to examine a description of what restrictions
a particular tree is enforcing. It can be used •'o show the overall and intermediate evidence
combination results for different candidatm. Each FIFTN node in the filter-tree provides a
documentation string describing its basic action, and the function then shows whal. happens
at each node on the way to the tree's toot. The following examples have been altered only
with le returns and -additional comments.

*<AC-fESOURCE-UTILIZATION 32069923> :ZAPABILITY
*<SIMPLE-VARIUBLE 32070011> :CANDIDATES NIL
(0.0 1.0) M<LIST-GENERATOR 32104967>, BELIEF THAT
#<PLAN- M-EIW. F-4C> SWlUiLD BE SELaCMhD

; This iS a the AIRCRAFdT-CAPADILITY slot of en GCA (tctually a remote
slot pointing to the CAPABILITY elot in art AIRCRAFT RERSATION).

;; The result shown ii an evaluation of F-4C &a a candidate for this
;; slot vith the resulting overall belioft of (0.0 1.0).

(0.0 0.0) W<CONSTAIAT-INST OCA-AIRC F-$SUITABILITY 5C16 SATISFIED>
CONSTRAINT BELIEF/ENDORSEMENT: (1.0 0.0),
:SUCCESS WEIGHTS: (0.9 0.9).
CONDITIONS: (1.0 0,0)
(1.0 0.0) *PREDICATS eCAPABILITY*>

90



(1.0 0.'0) #<HAND-CODED *CAPABILITY*> 1213
LFILTER-BY-CAPABILITY PROVIDES BELIEF THAT THE CANDIDATE
POSSESSES CAPABILITY AXPS:OCA-AC.
TRUE: (1.0 0.0); FALSE: (0.0 1.0)

;;This constraint wants the candidate to possess an OCA-AC
;;CAPABILITY. F-4C satisfies this condition. Notice that the lon.
;;level absolute belief is changed to (0.0 0.0) since the constraint
;;has an endorsement of 0.0 (it only complains, never compliments).

(0.0 1.0) W<ONSTRAINT-INST AIRCRAFT-CARRIES-SCL 0CX6 SATISFIED>
CONSTRAINT BELIEF/ENDORSEMENT: (1.0 0.05),
:FEASIBLE WEIGHTS: (1.0 1.0).
CONDITIONS: (1.0 0.0)
(0-0 1.0) *PREDICATE *AC-ORDNANCE*>
(0.0 1.0) #<DBPREDICATE 172352061> 1205
LFILTER-By-RELATION PROVIDES isLLIEF IN A CANDIDATE FOUND
(1.0 0.0) OR NOT FOUND (0.0 1.0) IN THE AIRCRAFT-NA.ME
ATTRIBUT1E POSITION OF A RELATION
(CAMPS-RDB :EQUALITY-MEMBER-SELECT (((AMPS :WSL-TYPE AMPS: SCL-El)) )
(CAMPS-RDBiPROJECT ((AMPS: AIRCRAFT-SMAE IPS: SCL -TYPE))
WCELAT-STROCT AC-SCL>))
1 VALUE: F-4G

;;This conatraint ensures that the aircraft can cu~rry t~he SCL th&t
;;has already been solected. The candida.te laila this test which
;;turns out to be a serious violation. Thare In jbgolute belief
;;that it is not feasib.'.e for tht, axrcralt to carry the selected
;;SCL.

(0. 1 0.0) *<COWST!UINT-INST AIRBASE-HAS-UNIT-HAS-AIRCRAFT OCX6
SATISFIED>
CONSTILAINT BELIEF/ENDORSEMENT: (1.0 0.1).
:FEASIBLE VEIGHTS: (1.0 1.0),
CONDITIONS: (1.0 0.0)
(1.0 0.0) W'REDICATE *AIRBASE-AIRCRAFT-UNIT*>
(1.0 0.0) 1<DBPREDICAYiE 172372360> 1202
LFXL'hR-BY-i.ELATION PROVIDES BELIEF IN A CANDIDATE FOUND
(1.0 0.0) OR NOT FOUND (0.0 1.0) IN THE AIRCRAFT-NAME
ATTRIBUTE POSITION OF A RELATION
(CAMHPS-RUB: EQUALITY-MEMER-SELECT ((AMPS: UNIT-NAME AMPS: S2TFW)))
(CAMPS-RUB: EQUALITY-KMBNER- SELECT
(((AMPS :AFFILIATION-OF4JUNT A MS: SPANGDAULEX)))
(CAMPS-RUB: JOIN-ON-ATTRIBUTES
(((ANPS:UNIT-NAMI . AMPS:UUIT-NANE)))
#<RELAT-STRUCT UNIT-CHAR)

91



#<RELAT-STRUCT &C-POOL-CHAR>)))
4 VALUES: F-4E F-4C F-16 F-4G

This constraint wants the candidate to be an AIRCRAFT that is
found at the selected UNIT and AIRBASE. It is satisfied by a
database check, but receives little credit due to a small

;; endorsement value.

(0.0 0.0) #<CONSTRAINT-INST FOLLOW-INTEL OCX6 NIL>
CONSTRAINT BELIEF/ENDORSEMENT: (0.3 0.8),
:SUCCESS WEIGHTS: (0.9 0.9),
CONDITIONS: (1.0 0.0)
(0.0 0.0) #<PREDICATE INTEL-SUGGESTION>
(0.0 0.0) #<DBPREDICATE 172376202> 1206
LFILTER-BY-RELATION PROVIDES BELIEF IN A CANDIDATE FOUND
(1.0 0.0) OR NOT FOUND (0.0 0.0) IN THE AIRCRAFT-NAME
ATTRIBUTE POSITION OF A RELATION

(CAMPS-RDB: EQUALITY-MEMBER-SELECT (((QUANTITY 4)))
(CAMPS-RDB: EQUALITY-MEMBER-SELECT
(( (AMPS: AIM-POINT AMPS: ALLSTEDT-B-CONTROL-RADAR)))
(CAMPS-RDB :PROJECT
((AMPS:AIM-POINT AMPS:AIRCRAFT-NAME
QUANTITY AMPS: SCL-TYPE))
S<RELAT-STRUCT INTEL-AIM-POINTS>)))
0 VALUES:

;; This constraint says to select the AIRCRAFT designated for this
;; mission by higher authority. No such specification was found in
;; the database, so the constraint offers no opinion on the value.

(0.0 0.54) #<CONSTRAINT-INST AIRCRAFT-APPROPRI&TE-FOR-TARGET OCX6 NIL>
CONSTRAINT BELIEF/ENDORSEMENT: (1.0 0.3).
:SUCCESS WEIGHTS: (0.9 0.9),
CONDITIONS: (1.0 0.0)
(0.0 0.6) #<PREDICATE AIRCRAFT-APPROPRIATE>
(0.0 0.6) #(RULE AC-FOR-RADIATOR2>
(0.0 1.0) #<PREDICATE WITHOUT-CAPABILITY>
(0.0 1.0) #<RULE WITHOUT-CAPABILITYI>
(0.0 1.0) #<PREDICATE *CAPABILITY*>
(0.0 1.0) #(HAND-CODED $CAPABILITY,> 1132
LPILTER-BY-CAPABILITY PROVIDES BELIEF THAT THE

CANDIDATE POSSESSES CAPABILITY AMPS:F-4G.
TRUE: (1.0 0.0); FALSE: (0.0 1.0)

This constraint checks that the AIRCRAFT is appropriate.
;; Apparently the TARGET is a RADIATOR and one of the rules

92



;; supporting the AIRCRAFT-APPROPRIATE predicate wants such targets
t; to be attacked by F-4GS. The fact that it is not an F-4G is

;; somewhat mitigated by nonunity RULE BELIEF and CONSTRAINT-CATEGORY
; WEIGHT.

The function SHOW-TEMINAL-WEIGHTED-CANDIDATES displays the overall prefilter beliefs
for a specified slot, along with the leaf node contributions to the overall result. The foMlowing
is a simple example for the FINISH time of an OCA. Apparently, the START time has been fixed
and a default EXPECTED-DURATION is also known. There is a strong constraint that insists
that the FINISH be later than the START. A weak constraint wafits the FINISH to be roughly
the stim of the start and expected duration. Note that the second and third ranges in the
result start at the preferred time and move away in both directions with linearly decreasing
belief, ending with the second belief pair at a value six hours (the delta argument to the
*FUZZY-PLUS* predicate) from the preferred value. Values before the START are absolutely
opposed. However, CAMPS at this early stage of planning has no objection to putting the end
off indefinitely, other than the very weak conflict based on the expected duration. Additional
constraints will impose further restrictions as planning continues.

#<OCA AKPSfOCX6 32067713> :FINISH
*<CAKPS:SIMPLE-VARIABLE 32079305> :FIXED 2774547552
((0.00999999 0.0)
(((:2774547552 12/03/87 14:39:12] [2774547552 12/03/87 14:39:121)))
((0.00999999 0.0)
(([2774547552 12/03/87 14:39:12] [2774669152 12/03/87 20:39:12]))
(0.008612037 0.1387943))
((0.00999999 0.0)
(([2774547552 12/03/87 14:39:12) (2774525952 12/03/87 08:39:12]))
(0.008612037 0.1387943))
((0.008612037 0.1387943)
(([2774669152 12/03/87 20:39:12) ,INF)))
((0.0 1.0)
(([2774525952 12/03/87 08:39:12) -INF)))
((0.0 1.0)
(([2774526952 12/03/87 08:39:12) [2774525952 12/03/87 08:39:12])))
:RFILTER RFILTER-BY-> CANPS:eGREATER* #<FIFTN 172464317>
#(CONSTRAINT-INST ORDERED-START-FINISH OC6 SATISFIED 32092175>
((1.0 0.0) (([2774525952 12/03/87 08:39:12) *INF)))
((0.0 1.0) (([2774526952 12/03/87 08:39:12] -IMF)))
:RFILTER RFILTER-BY-*- CAMPS:*FUZZY-PLUSe S<FIFT9 172464306>
*<CONSTRhINT-INST DURATION-APPROX-EIPECTED OC16 SATISFIED 32092225>
((1.0 0.0)
(([2774547652 12/03/87 14:39:12) [2774647552 12/03/87 14:39:121)))
((1.0 0.0)
(([2774541652 12/03/87 14:39:12) [2774569152 12/03/87 20:39:121))

93



(0.0 1.0))
((1.0 0.0)

(([2774547552 12/03/87 14:39:12) [2774525952 12/03/87 08:39:121))
(0.0 1.0))

((0.0 1.0)

(([2774569152 12/03/87 20:39:12) +INF)
([2774525952 12/03/87 08:39:12) -INF)))

94



MISSION

Rome Air Development Center

RADC plans and executes research, development, test and
selected acquisition programs in support of Command, Control,
Communications and Intelligence (CI) activities. Technical and
engineering support within areas of competence is provided to
ESD Program Offices (POs) and other ESD elements to
pcrform effective acquisition of C'l systems. The areas of
technical competence include communications, command and
control, battle management information processing, surveillance
Sensors, intelligence data collection and handling, solid state
O sciences, elect romagnetics, and propagation, and electronic

reliability / maintainabihity and compatibilhly.

</


